Westonci.ca is the ultimate Q&A platform, offering detailed and reliable answers from a knowledgeable community. Get detailed and accurate answers to your questions from a community of experts on our comprehensive Q&A platform. Join our Q&A platform to connect with experts dedicated to providing accurate answers to your questions in various fields.
Sagot :
To identify which linear function represents a slope of [tex]\(\frac{1}{4}\)[/tex], we need to determine the slope of the line segments between consecutive points for each set of points and compare them to the desired slope.
The slope between two points [tex]\((x_1, y_1)\)[/tex] and [tex]\((x_2, y_2)\)[/tex] is given by the formula:
[tex]\[ m = \frac{y_2 - y_1}{x_2 - x_1} \][/tex]
Let's analyze each set of points step-by-step.
### First Set of Points
[tex]\[ \begin{array}{|c|c|} \hline x & y \\ \hline 3 & -11 \\ \hline 6 & 1 \\ \hline 9 & 13 \\ \hline 12 & 25 \\ \hline \end{array} \][/tex]
1. Between [tex]\((3, -11)\)[/tex] and [tex]\((6, 1)\)[/tex]:
[tex]\[ \text{slope} = \frac{1 - (-11)}{6 - 3} = \frac{1 + 11}{6 - 3} = \frac{12}{3} = 4 \][/tex]
2. Between [tex]\((6, 1)\)[/tex] and [tex]\((9, 13)\)[/tex]:
[tex]\[ \text{slope} = \frac{13 - 1}{9 - 6} = \frac{12}{3} = 4 \][/tex]
3. Between [tex]\((9, 13)\)[/tex] and [tex]\((12, 25)\)[/tex]:
[tex]\[ \text{slope} = \frac{25 - 13}{12 - 9} = \frac{12}{3} = 4 \][/tex]
The slopes between consecutive points in the first set are all [tex]\(4\)[/tex]. Since these slopes are not [tex]\(\frac{1}{4}\)[/tex], the first set of points does not represent a linear function with a slope of [tex]\(\frac{1}{4}\)[/tex].
### Second Set of Points
[tex]\[ \begin{array}{|c|c|} \hline x & y \\ \hline -5 & 32 \\ \hline -1 & 24 \\ \hline 3 & 16 \\ \hline 7 & 8 \\ \hline \end{array} \][/tex]
1. Between [tex]\((-5, 32)\)[/tex] and [tex]\((-1, 24)\)[/tex]:
[tex]\[ \text{slope} = \frac{24 - 32}{-1 - (-5)} = \frac{24 - 32}{-1 + 5} = \frac{-8}{4} = -2 \][/tex]
2. Between [tex]\((-1, 24)\)[/tex] and [tex]\((3, 16)\)[/tex]:
[tex]\[ \text{slope} = \frac{16 - 24}{3 - (-1)} = \frac{16 - 24}{3 + 1} = \frac{-8}{4} = -2 \][/tex]
3. Between [tex]\((3, 16)\)[/tex] and [tex]\((7, 8)\)[/tex]:
[tex]\[ \text{slope} = \frac{8 - 16}{7 - 3} = \frac{8 - 16}{7 - 3} = \frac{-8}{4} = -2 \][/tex]
The slopes between consecutive points in the second set are all [tex]\(-2\)[/tex]. Since these slopes are not [tex]\(\frac{1}{4}\)[/tex], the second set of points does not represent a linear function with a slope of [tex]\(\frac{1}{4}\)[/tex].
### Conclusion
Neither set of points represents a linear function with a slope of [tex]\(\frac{1}{4}\)[/tex]. The slopes calculated for both sets do not match the required slope of [tex]\(\frac{1}{4}\)[/tex].
The slope between two points [tex]\((x_1, y_1)\)[/tex] and [tex]\((x_2, y_2)\)[/tex] is given by the formula:
[tex]\[ m = \frac{y_2 - y_1}{x_2 - x_1} \][/tex]
Let's analyze each set of points step-by-step.
### First Set of Points
[tex]\[ \begin{array}{|c|c|} \hline x & y \\ \hline 3 & -11 \\ \hline 6 & 1 \\ \hline 9 & 13 \\ \hline 12 & 25 \\ \hline \end{array} \][/tex]
1. Between [tex]\((3, -11)\)[/tex] and [tex]\((6, 1)\)[/tex]:
[tex]\[ \text{slope} = \frac{1 - (-11)}{6 - 3} = \frac{1 + 11}{6 - 3} = \frac{12}{3} = 4 \][/tex]
2. Between [tex]\((6, 1)\)[/tex] and [tex]\((9, 13)\)[/tex]:
[tex]\[ \text{slope} = \frac{13 - 1}{9 - 6} = \frac{12}{3} = 4 \][/tex]
3. Between [tex]\((9, 13)\)[/tex] and [tex]\((12, 25)\)[/tex]:
[tex]\[ \text{slope} = \frac{25 - 13}{12 - 9} = \frac{12}{3} = 4 \][/tex]
The slopes between consecutive points in the first set are all [tex]\(4\)[/tex]. Since these slopes are not [tex]\(\frac{1}{4}\)[/tex], the first set of points does not represent a linear function with a slope of [tex]\(\frac{1}{4}\)[/tex].
### Second Set of Points
[tex]\[ \begin{array}{|c|c|} \hline x & y \\ \hline -5 & 32 \\ \hline -1 & 24 \\ \hline 3 & 16 \\ \hline 7 & 8 \\ \hline \end{array} \][/tex]
1. Between [tex]\((-5, 32)\)[/tex] and [tex]\((-1, 24)\)[/tex]:
[tex]\[ \text{slope} = \frac{24 - 32}{-1 - (-5)} = \frac{24 - 32}{-1 + 5} = \frac{-8}{4} = -2 \][/tex]
2. Between [tex]\((-1, 24)\)[/tex] and [tex]\((3, 16)\)[/tex]:
[tex]\[ \text{slope} = \frac{16 - 24}{3 - (-1)} = \frac{16 - 24}{3 + 1} = \frac{-8}{4} = -2 \][/tex]
3. Between [tex]\((3, 16)\)[/tex] and [tex]\((7, 8)\)[/tex]:
[tex]\[ \text{slope} = \frac{8 - 16}{7 - 3} = \frac{8 - 16}{7 - 3} = \frac{-8}{4} = -2 \][/tex]
The slopes between consecutive points in the second set are all [tex]\(-2\)[/tex]. Since these slopes are not [tex]\(\frac{1}{4}\)[/tex], the second set of points does not represent a linear function with a slope of [tex]\(\frac{1}{4}\)[/tex].
### Conclusion
Neither set of points represents a linear function with a slope of [tex]\(\frac{1}{4}\)[/tex]. The slopes calculated for both sets do not match the required slope of [tex]\(\frac{1}{4}\)[/tex].
Thank you for choosing our service. We're dedicated to providing the best answers for all your questions. Visit us again. We hope you found what you were looking for. Feel free to revisit us for more answers and updated information. We're glad you visited Westonci.ca. Return anytime for updated answers from our knowledgeable team.