Welcome to Westonci.ca, the ultimate question and answer platform. Get expert answers to your questions quickly and accurately. Explore thousands of questions and answers from a knowledgeable community of experts on our user-friendly platform. Explore comprehensive solutions to your questions from a wide range of professionals on our user-friendly platform.
Sagot :
To express [tex]\(\log_b \frac{G}{6}\)[/tex] as a difference of logarithms, we will utilize the properties of logarithms.
The logarithm property that we will use is:
[tex]\[ \log_b \left(\frac{M}{N}\right) = \log_b M - \log_b N \][/tex]
This property states that the logarithm of a quotient is equal to the logarithm of the numerator minus the logarithm of the denominator.
Given the expression [tex]\(\log_b \frac{G}{6}\)[/tex]:
1. Identify the numerator and the denominator in the expression. Here, [tex]\(G\)[/tex] is the numerator and [tex]\(6\)[/tex] is the denominator.
2. Apply the logarithm quotient property.
So, we have:
[tex]\[ \log_b \frac{G}{6} = \log_b G - \log_b 6 \][/tex]
Therefore:
[tex]\[ \log_b \frac{G}{6} = \log_b G - \log_b 6 \][/tex]
Thus, the logarithm [tex]\(\log_b \frac{G}{6}\)[/tex] can be expressed as the difference of [tex]\(\log_b G\)[/tex] and [tex]\(\log_b 6\)[/tex], i.e., [tex]\(\log_b G - \log_b 6\)[/tex].
The logarithm property that we will use is:
[tex]\[ \log_b \left(\frac{M}{N}\right) = \log_b M - \log_b N \][/tex]
This property states that the logarithm of a quotient is equal to the logarithm of the numerator minus the logarithm of the denominator.
Given the expression [tex]\(\log_b \frac{G}{6}\)[/tex]:
1. Identify the numerator and the denominator in the expression. Here, [tex]\(G\)[/tex] is the numerator and [tex]\(6\)[/tex] is the denominator.
2. Apply the logarithm quotient property.
So, we have:
[tex]\[ \log_b \frac{G}{6} = \log_b G - \log_b 6 \][/tex]
Therefore:
[tex]\[ \log_b \frac{G}{6} = \log_b G - \log_b 6 \][/tex]
Thus, the logarithm [tex]\(\log_b \frac{G}{6}\)[/tex] can be expressed as the difference of [tex]\(\log_b G\)[/tex] and [tex]\(\log_b 6\)[/tex], i.e., [tex]\(\log_b G - \log_b 6\)[/tex].
We hope this information was helpful. Feel free to return anytime for more answers to your questions and concerns. Your visit means a lot to us. Don't hesitate to return for more reliable answers to any questions you may have. Get the answers you need at Westonci.ca. Stay informed by returning for our latest expert advice.