Looking for trustworthy answers? Westonci.ca is the ultimate Q&A platform where experts share their knowledge on various topics. Join our Q&A platform to connect with experts dedicated to providing precise answers to your questions in different areas. Get quick and reliable solutions to your questions from a community of experienced experts on our platform.
Sagot :
To solve the equation [tex]\(\tan \theta - 1 = 0\)[/tex] within the interval [tex]\([0, 2\pi)\)[/tex], follow these steps:
1. Rewrite the Equation:
[tex]\[ \tan \theta - 1 = 0 \quad \Rightarrow \quad \tan \theta = 1 \][/tex]
2. Identify the General Solution:
The tangent function, [tex]\(\tan \theta\)[/tex], repeats every [tex]\(\pi\)[/tex] radians because [tex]\(\tan(\theta + \pi) = \tan \theta\)[/tex]. The specific angle for which [tex]\(\tan \theta = 1\)[/tex] is [tex]\(\frac{\pi}{4}\)[/tex]. Hence, the general solutions are:
[tex]\[ \theta = \frac{\pi}{4} + n\pi \quad \text{for integer } n \][/tex]
3. Find Specific Solutions in the Interval [tex]\([0, 2\pi)\)[/tex]:
We need to consider values of [tex]\(n\)[/tex] such that [tex]\(\theta\)[/tex] falls within [tex]\([0, 2\pi)\)[/tex].
- For [tex]\(n = 0\)[/tex]:
[tex]\[ \theta = \frac{\pi}{4} \][/tex]
- For [tex]\(n = 1\)[/tex]:
[tex]\[ \theta = \frac{\pi}{4} + \pi = \frac{\pi}{4} + \frac{4\pi}{4} = \frac{5\pi}{4} \][/tex]
- For [tex]\(n = 2\)[/tex]:
[tex]\[ \theta = \frac{\pi}{4} + 2\pi = \frac{\pi}{4} + \frac{8\pi}{4} = \frac{9\pi}{4} \][/tex]
Note that [tex]\(\frac{9\pi}{4}\)[/tex] is greater than [tex]\(2\pi\)[/tex], so it is not within the interval [tex]\([0, 2\pi)\)[/tex].
Thus, the solutions within the interval [tex]\([0, 2\pi)\)[/tex] are:
[tex]\[ \boxed{\frac{\pi}{4}, \frac{5\pi}{4}} \][/tex]
These values in radians correspond to approximately 0.7853981633974483 and 3.9269908169872414, respectively. Therefore, the solutions to the equation [tex]\(\tan \theta - 1 = 0\)[/tex] in the interval [tex]\([0, 2\pi)\)[/tex] are:
[tex]\[ \theta = \frac{\pi}{4}, \frac{5\pi}{4} \][/tex]
1. Rewrite the Equation:
[tex]\[ \tan \theta - 1 = 0 \quad \Rightarrow \quad \tan \theta = 1 \][/tex]
2. Identify the General Solution:
The tangent function, [tex]\(\tan \theta\)[/tex], repeats every [tex]\(\pi\)[/tex] radians because [tex]\(\tan(\theta + \pi) = \tan \theta\)[/tex]. The specific angle for which [tex]\(\tan \theta = 1\)[/tex] is [tex]\(\frac{\pi}{4}\)[/tex]. Hence, the general solutions are:
[tex]\[ \theta = \frac{\pi}{4} + n\pi \quad \text{for integer } n \][/tex]
3. Find Specific Solutions in the Interval [tex]\([0, 2\pi)\)[/tex]:
We need to consider values of [tex]\(n\)[/tex] such that [tex]\(\theta\)[/tex] falls within [tex]\([0, 2\pi)\)[/tex].
- For [tex]\(n = 0\)[/tex]:
[tex]\[ \theta = \frac{\pi}{4} \][/tex]
- For [tex]\(n = 1\)[/tex]:
[tex]\[ \theta = \frac{\pi}{4} + \pi = \frac{\pi}{4} + \frac{4\pi}{4} = \frac{5\pi}{4} \][/tex]
- For [tex]\(n = 2\)[/tex]:
[tex]\[ \theta = \frac{\pi}{4} + 2\pi = \frac{\pi}{4} + \frac{8\pi}{4} = \frac{9\pi}{4} \][/tex]
Note that [tex]\(\frac{9\pi}{4}\)[/tex] is greater than [tex]\(2\pi\)[/tex], so it is not within the interval [tex]\([0, 2\pi)\)[/tex].
Thus, the solutions within the interval [tex]\([0, 2\pi)\)[/tex] are:
[tex]\[ \boxed{\frac{\pi}{4}, \frac{5\pi}{4}} \][/tex]
These values in radians correspond to approximately 0.7853981633974483 and 3.9269908169872414, respectively. Therefore, the solutions to the equation [tex]\(\tan \theta - 1 = 0\)[/tex] in the interval [tex]\([0, 2\pi)\)[/tex] are:
[tex]\[ \theta = \frac{\pi}{4}, \frac{5\pi}{4} \][/tex]
Thank you for trusting us with your questions. We're here to help you find accurate answers quickly and efficiently. We hope you found this helpful. Feel free to come back anytime for more accurate answers and updated information. Westonci.ca is your go-to source for reliable answers. Return soon for more expert insights.