Find the best solutions to your questions at Westonci.ca, the premier Q&A platform with a community of knowledgeable experts. Explore a wealth of knowledge from professionals across different disciplines on our comprehensive platform. Connect with a community of professionals ready to provide precise solutions to your questions quickly and accurately.
Sagot :
To solve the equation [tex]\(\cot \theta = 0\)[/tex], let's go through the steps in detail:
### Understanding [tex]\(\cot \theta\)[/tex]
1. Definition of [tex]\(\cot \theta\)[/tex]:
[tex]\(\cot \theta\)[/tex] is defined as the reciprocal of the tangent function: [tex]\(\cot \theta = \frac{1}{\tan \theta}\)[/tex].
2. When is [tex]\(\cot \theta = 0\)[/tex]?:
Since [tex]\(\cot \theta = \frac{1}{\tan \theta}\)[/tex], the cotangent function equals zero when the tangent function is undefined (which happens when the tangent function approaches infinity).
### Finding [tex]\(\theta\)[/tex]
3. Behavior of [tex]\(\tan \theta\)[/tex]:
The tangent function, [tex]\(\tan \theta\)[/tex], approaches infinity at odd multiples of [tex]\(\frac{\pi}{2}\)[/tex]. This occurs because the tangent function has vertical asymptotes at these points.
4. Key Values for [tex]\(\theta\)[/tex]:
Therefore, [tex]\(\tan \theta\)[/tex] is undefined at:
[tex]\[ \theta = \frac{\pi}{2} + k\pi \][/tex]
where [tex]\(k\)[/tex] is any integer. These are the points where [tex]\(\cot \theta = 0\)[/tex].
### Conclusion:
5. General Solution:
The solutions to the equation [tex]\(\cot \theta = 0\)[/tex] are given by:
[tex]\[ \theta = \frac{\pi}{2} + k\pi \quad \text{where } k \text{ is any integer} \][/tex]
In conclusion, the set of all possible solutions to the equation [tex]\(\cot \theta = 0\)[/tex] can be expressed as:
[tex]\[ \theta = \frac{\pi}{2} + k\pi \quad \text{where } k \text{ is any integer} \][/tex]
This means that [tex]\(\theta\)[/tex] can be [tex]\(\frac{\pi}{2}\)[/tex], [tex]\(\frac{3\pi}{2}\)[/tex], [tex]\(\frac{5\pi}{2}\)[/tex], [tex]\(-\frac{\pi}{2}\)[/tex], and so on.
### Understanding [tex]\(\cot \theta\)[/tex]
1. Definition of [tex]\(\cot \theta\)[/tex]:
[tex]\(\cot \theta\)[/tex] is defined as the reciprocal of the tangent function: [tex]\(\cot \theta = \frac{1}{\tan \theta}\)[/tex].
2. When is [tex]\(\cot \theta = 0\)[/tex]?:
Since [tex]\(\cot \theta = \frac{1}{\tan \theta}\)[/tex], the cotangent function equals zero when the tangent function is undefined (which happens when the tangent function approaches infinity).
### Finding [tex]\(\theta\)[/tex]
3. Behavior of [tex]\(\tan \theta\)[/tex]:
The tangent function, [tex]\(\tan \theta\)[/tex], approaches infinity at odd multiples of [tex]\(\frac{\pi}{2}\)[/tex]. This occurs because the tangent function has vertical asymptotes at these points.
4. Key Values for [tex]\(\theta\)[/tex]:
Therefore, [tex]\(\tan \theta\)[/tex] is undefined at:
[tex]\[ \theta = \frac{\pi}{2} + k\pi \][/tex]
where [tex]\(k\)[/tex] is any integer. These are the points where [tex]\(\cot \theta = 0\)[/tex].
### Conclusion:
5. General Solution:
The solutions to the equation [tex]\(\cot \theta = 0\)[/tex] are given by:
[tex]\[ \theta = \frac{\pi}{2} + k\pi \quad \text{where } k \text{ is any integer} \][/tex]
In conclusion, the set of all possible solutions to the equation [tex]\(\cot \theta = 0\)[/tex] can be expressed as:
[tex]\[ \theta = \frac{\pi}{2} + k\pi \quad \text{where } k \text{ is any integer} \][/tex]
This means that [tex]\(\theta\)[/tex] can be [tex]\(\frac{\pi}{2}\)[/tex], [tex]\(\frac{3\pi}{2}\)[/tex], [tex]\(\frac{5\pi}{2}\)[/tex], [tex]\(-\frac{\pi}{2}\)[/tex], and so on.
We appreciate your visit. Hopefully, the answers you found were beneficial. Don't hesitate to come back for more information. Thank you for your visit. We're committed to providing you with the best information available. Return anytime for more. Westonci.ca is here to provide the answers you seek. Return often for more expert solutions.