Welcome to Westonci.ca, the place where your questions find answers from a community of knowledgeable experts. Ask your questions and receive detailed answers from professionals with extensive experience in various fields. Join our platform to connect with experts ready to provide precise answers to your questions in different areas.
Sagot :
To determine whether the observed frequencies of customers served align with the expected uniform distribution, we need to perform a Chi-Square goodness-of-fit test. Let's go through the steps in detail:
1. Observed Frequencies:
- The number of customers served each day are as follows:
[tex]\[ \text{Monday: } 40, \quad \text{Tuesday: } 33, \quad \text{Wednesday: } 35, \quad \text{Thursday: } 32, \quad \text{Friday: } 60 \][/tex]
This gives us the observed frequencies:
[tex]\[ \mathbf{Observed} = [40, 33, 35, 32, 60] \][/tex]
2. Total Number of Observations:
- The total number of customers served in the week is:
[tex]\[ \text{Total} = 200 \][/tex]
3. Expected Frequencies:
- If the customers are served uniformly throughout the week, we expect the same number of customers each day. Given there are 5 days, the expected frequency for each day can be calculated as:
[tex]\[ \text{Expected Frequency} = \frac{\text{Total}}{5} = \frac{200}{5} = 40 \][/tex]
This gives us the expected frequencies:
[tex]\[ \mathbf{Expected} = [40, 40, 40, 40, 40] \][/tex]
4. Calculate the Chi-Square Test Statistic:
- The Chi-Square test statistic [tex]\(\chi^2\)[/tex] is calculated using the formula:
[tex]\[ \chi^2 = \sum \frac{(\text{Observed} - \text{Expected})^2}{\text{Expected}} \][/tex]
Substituting the observed and expected frequencies into this formula, we get:
[tex]\[ \chi^2 = \frac{(40 - 40)^2}{40} + \frac{(33 - 40)^2}{40} + \frac{(35 - 40)^2}{40} + \frac{(32 - 40)^2}{40} + \frac{(60 - 40)^2}{40} \][/tex]
Simplifying each term, we get:
[tex]\[ \frac{(40 - 40)^2}{40} = \frac{0^2}{40} = 0 \][/tex]
[tex]\[ \frac{(33 - 40)^2}{40} = \frac{(-7)^2}{40} = \frac{49}{40} = 1.225 \][/tex]
[tex]\[ \frac{(35 - 40)^2}{40} = \frac{(-5)^2}{40} = \frac{25}{40} = 0.625 \][/tex]
[tex]\[ \frac{(32 - 40)^2}{40} = \frac{(-8)^2}{40} = \frac{64}{40} = 1.6 \][/tex]
[tex]\[ \frac{(60 - 40)^2}{40} = \frac{20^2}{40} = \frac{400}{40} = 10 \][/tex]
Summing these results:
[tex]\[ \chi^2 = 0 + 1.225 + 0.625 + 1.6 + 10 = 13.45 \][/tex]
Therefore, the test statistic [tex]\(\chi^2\)[/tex] is [tex]\(13.45\)[/tex].
1. Observed Frequencies:
- The number of customers served each day are as follows:
[tex]\[ \text{Monday: } 40, \quad \text{Tuesday: } 33, \quad \text{Wednesday: } 35, \quad \text{Thursday: } 32, \quad \text{Friday: } 60 \][/tex]
This gives us the observed frequencies:
[tex]\[ \mathbf{Observed} = [40, 33, 35, 32, 60] \][/tex]
2. Total Number of Observations:
- The total number of customers served in the week is:
[tex]\[ \text{Total} = 200 \][/tex]
3. Expected Frequencies:
- If the customers are served uniformly throughout the week, we expect the same number of customers each day. Given there are 5 days, the expected frequency for each day can be calculated as:
[tex]\[ \text{Expected Frequency} = \frac{\text{Total}}{5} = \frac{200}{5} = 40 \][/tex]
This gives us the expected frequencies:
[tex]\[ \mathbf{Expected} = [40, 40, 40, 40, 40] \][/tex]
4. Calculate the Chi-Square Test Statistic:
- The Chi-Square test statistic [tex]\(\chi^2\)[/tex] is calculated using the formula:
[tex]\[ \chi^2 = \sum \frac{(\text{Observed} - \text{Expected})^2}{\text{Expected}} \][/tex]
Substituting the observed and expected frequencies into this formula, we get:
[tex]\[ \chi^2 = \frac{(40 - 40)^2}{40} + \frac{(33 - 40)^2}{40} + \frac{(35 - 40)^2}{40} + \frac{(32 - 40)^2}{40} + \frac{(60 - 40)^2}{40} \][/tex]
Simplifying each term, we get:
[tex]\[ \frac{(40 - 40)^2}{40} = \frac{0^2}{40} = 0 \][/tex]
[tex]\[ \frac{(33 - 40)^2}{40} = \frac{(-7)^2}{40} = \frac{49}{40} = 1.225 \][/tex]
[tex]\[ \frac{(35 - 40)^2}{40} = \frac{(-5)^2}{40} = \frac{25}{40} = 0.625 \][/tex]
[tex]\[ \frac{(32 - 40)^2}{40} = \frac{(-8)^2}{40} = \frac{64}{40} = 1.6 \][/tex]
[tex]\[ \frac{(60 - 40)^2}{40} = \frac{20^2}{40} = \frac{400}{40} = 10 \][/tex]
Summing these results:
[tex]\[ \chi^2 = 0 + 1.225 + 0.625 + 1.6 + 10 = 13.45 \][/tex]
Therefore, the test statistic [tex]\(\chi^2\)[/tex] is [tex]\(13.45\)[/tex].
We hope this information was helpful. Feel free to return anytime for more answers to your questions and concerns. We hope this was helpful. Please come back whenever you need more information or answers to your queries. Your questions are important to us at Westonci.ca. Visit again for expert answers and reliable information.