Looking for answers? Westonci.ca is your go-to Q&A platform, offering quick, trustworthy responses from a community of experts. Explore thousands of questions and answers from a knowledgeable community of experts ready to help you find solutions. Get precise and detailed answers to your questions from a knowledgeable community of experts on our Q&A platform.
Sagot :
To factor the polynomial [tex]\(24x^3 - 54x^2 + 44x - 99\)[/tex] by grouping, let's break down the steps:
1. Group the terms appropriately:
[tex]\[ 24x^3 - 54x^2 + 44x - 99 \][/tex]
Group as:
[tex]\[ (24x^3 - 54x^2) + (44x - 99) \][/tex]
2. Factor out the greatest common factor (GCF) from each group:
- For the first group [tex]\(24x^3 - 54x^2\)[/tex], the GCF is [tex]\(6x^2\)[/tex]:
[tex]\[ 24x^3 - 54x^2 = 6x^2(4x - 9) \][/tex]
- For the second group [tex]\(44x - 99\)[/tex], the GCF is [tex]\(11\)[/tex]:
[tex]\[ 44x - 99 = 11(4x - 9) \][/tex]
3. Notice that after factoring out the GCF from each group, the binomial factors [tex]\(4x - 9\)[/tex] are common:
[tex]\[ 24x^3 - 54x^2 + 44x - 99 = 6x^2(4x - 9) + 11(4x - 9) \][/tex]
4. Factor out the common binomial factor [tex]\((4x - 9)\)[/tex]:
[tex]\[ 6x^2(4x - 9) + 11(4x - 9) = (4x - 9)(6x^2 + 11) \][/tex]
Therefore, the common factor that is missing from both sets of parentheses is:
[tex]\[ 6x^2 + 11 \][/tex]
So, the correct answer is:
```
6 x^2 + 11
```
1. Group the terms appropriately:
[tex]\[ 24x^3 - 54x^2 + 44x - 99 \][/tex]
Group as:
[tex]\[ (24x^3 - 54x^2) + (44x - 99) \][/tex]
2. Factor out the greatest common factor (GCF) from each group:
- For the first group [tex]\(24x^3 - 54x^2\)[/tex], the GCF is [tex]\(6x^2\)[/tex]:
[tex]\[ 24x^3 - 54x^2 = 6x^2(4x - 9) \][/tex]
- For the second group [tex]\(44x - 99\)[/tex], the GCF is [tex]\(11\)[/tex]:
[tex]\[ 44x - 99 = 11(4x - 9) \][/tex]
3. Notice that after factoring out the GCF from each group, the binomial factors [tex]\(4x - 9\)[/tex] are common:
[tex]\[ 24x^3 - 54x^2 + 44x - 99 = 6x^2(4x - 9) + 11(4x - 9) \][/tex]
4. Factor out the common binomial factor [tex]\((4x - 9)\)[/tex]:
[tex]\[ 6x^2(4x - 9) + 11(4x - 9) = (4x - 9)(6x^2 + 11) \][/tex]
Therefore, the common factor that is missing from both sets of parentheses is:
[tex]\[ 6x^2 + 11 \][/tex]
So, the correct answer is:
```
6 x^2 + 11
```
Visit us again for up-to-date and reliable answers. We're always ready to assist you with your informational needs. We hope you found what you were looking for. Feel free to revisit us for more answers and updated information. Stay curious and keep coming back to Westonci.ca for answers to all your burning questions.