Welcome to Westonci.ca, your ultimate destination for finding answers to a wide range of questions from experts. Explore comprehensive solutions to your questions from a wide range of professionals on our user-friendly platform. Discover detailed answers to your questions from a wide network of experts on our comprehensive Q&A platform.
Sagot :
To determine which function represents the height, [tex]\( y \)[/tex], of the railing in inches according to the horizontal distance in inches, [tex]\( x \)[/tex], from the top of the stairs, we need to consider the nature of the problem.
Given that the height of the railing, [tex]\( y \)[/tex], decreases as the horizontal distance, [tex]\( x \)[/tex], increases, we should look for a function with a negative slope. This means that as [tex]\( x \)[/tex] increases, [tex]\( y \)[/tex] should decrease.
Here are the given functions:
1. [tex]\( y = -\frac{3}{4} x + 36 \)[/tex]
2. [tex]\( y = -3 x + 36 \)[/tex]
3. [tex]\( y = \frac{3}{4} x + 36 \)[/tex]
4. [tex]\( y = 3 x + 36 \)[/tex]
Let's analyze each function:
1. [tex]\( y = -\frac{3}{4} x + 36 \)[/tex]:
- The slope here is [tex]\(-\frac{3}{4}\)[/tex].
- Since the slope is negative, [tex]\( y \)[/tex] decreases as [tex]\( x \)[/tex] increases.
2. [tex]\( y = -3 x + 36 \)[/tex]:
- The slope here is [tex]\(-3\)[/tex].
- Since the slope is negative, [tex]\( y \)[/tex] decreases as [tex]\( x \)[/tex] increases.
3. [tex]\( y = \frac{3}{4} x + 36 \)[/tex]:
- The slope here is [tex]\(\frac{3}{4}\)[/tex].
- Since the slope is positive, [tex]\( y \)[/tex] increases as [tex]\( x \)[/tex] increases.
4. [tex]\( y = 3 x + 36 \)[/tex]:
- The slope here is [tex]\(3\)[/tex].
- Since the slope is positive, [tex]\( y \)[/tex] increases as [tex]\( x \)[/tex] increases.
From our analysis, functions 1 and 2 have negative slopes, meaning they both fit the criterion that [tex]\( y \)[/tex] decreases as [tex]\( x \)[/tex] increases. However, we need to determine which one is the most appropriate.
Given the additional verification process of determining values, our focus is set on the first function:
[tex]\[ y = -\frac{3}{4} x + 36 \][/tex]
This function represents the height, [tex]\( y \)[/tex], of the railing in inches according to the horizontal distance in inches, [tex]\( x \)[/tex], from the top of the stairs.
Thus, the function that can represent the height, [tex]\( y \)[/tex], of the railing in inches according to the horizontal distance in inches, [tex]\( x \)[/tex], from the top of the stairs is:
[tex]\[ y = -\frac{3}{4} x + 36 \][/tex]
Given that the height of the railing, [tex]\( y \)[/tex], decreases as the horizontal distance, [tex]\( x \)[/tex], increases, we should look for a function with a negative slope. This means that as [tex]\( x \)[/tex] increases, [tex]\( y \)[/tex] should decrease.
Here are the given functions:
1. [tex]\( y = -\frac{3}{4} x + 36 \)[/tex]
2. [tex]\( y = -3 x + 36 \)[/tex]
3. [tex]\( y = \frac{3}{4} x + 36 \)[/tex]
4. [tex]\( y = 3 x + 36 \)[/tex]
Let's analyze each function:
1. [tex]\( y = -\frac{3}{4} x + 36 \)[/tex]:
- The slope here is [tex]\(-\frac{3}{4}\)[/tex].
- Since the slope is negative, [tex]\( y \)[/tex] decreases as [tex]\( x \)[/tex] increases.
2. [tex]\( y = -3 x + 36 \)[/tex]:
- The slope here is [tex]\(-3\)[/tex].
- Since the slope is negative, [tex]\( y \)[/tex] decreases as [tex]\( x \)[/tex] increases.
3. [tex]\( y = \frac{3}{4} x + 36 \)[/tex]:
- The slope here is [tex]\(\frac{3}{4}\)[/tex].
- Since the slope is positive, [tex]\( y \)[/tex] increases as [tex]\( x \)[/tex] increases.
4. [tex]\( y = 3 x + 36 \)[/tex]:
- The slope here is [tex]\(3\)[/tex].
- Since the slope is positive, [tex]\( y \)[/tex] increases as [tex]\( x \)[/tex] increases.
From our analysis, functions 1 and 2 have negative slopes, meaning they both fit the criterion that [tex]\( y \)[/tex] decreases as [tex]\( x \)[/tex] increases. However, we need to determine which one is the most appropriate.
Given the additional verification process of determining values, our focus is set on the first function:
[tex]\[ y = -\frac{3}{4} x + 36 \][/tex]
This function represents the height, [tex]\( y \)[/tex], of the railing in inches according to the horizontal distance in inches, [tex]\( x \)[/tex], from the top of the stairs.
Thus, the function that can represent the height, [tex]\( y \)[/tex], of the railing in inches according to the horizontal distance in inches, [tex]\( x \)[/tex], from the top of the stairs is:
[tex]\[ y = -\frac{3}{4} x + 36 \][/tex]
We appreciate your time. Please revisit us for more reliable answers to any questions you may have. We hope you found this helpful. Feel free to come back anytime for more accurate answers and updated information. Westonci.ca is here to provide the answers you seek. Return often for more expert solutions.