Westonci.ca is the premier destination for reliable answers to your questions, provided by a community of experts. Connect with professionals ready to provide precise answers to your questions on our comprehensive Q&A platform. Explore comprehensive solutions to your questions from a wide range of professionals on our user-friendly platform.

Which function can represent the height, [tex]$y$[/tex], of the railing in inches according to the horizontal distance in inches, [tex]$x$[/tex], from the top of the stairs?

A. [tex]$y = -\frac{3}{4} x + 36$[/tex]
B. [tex][tex]$y = -3 x + 36$[/tex][/tex]
C. [tex]$y = \frac{3}{4} x + 36$[/tex]
D. [tex]$y = 3 x + 36$[/tex]

Sagot :

To determine which function represents the height, [tex]\( y \)[/tex], of the railing in inches according to the horizontal distance in inches, [tex]\( x \)[/tex], from the top of the stairs, we need to consider the nature of the problem.

Given that the height of the railing, [tex]\( y \)[/tex], decreases as the horizontal distance, [tex]\( x \)[/tex], increases, we should look for a function with a negative slope. This means that as [tex]\( x \)[/tex] increases, [tex]\( y \)[/tex] should decrease.

Here are the given functions:

1. [tex]\( y = -\frac{3}{4} x + 36 \)[/tex]
2. [tex]\( y = -3 x + 36 \)[/tex]
3. [tex]\( y = \frac{3}{4} x + 36 \)[/tex]
4. [tex]\( y = 3 x + 36 \)[/tex]

Let's analyze each function:

1. [tex]\( y = -\frac{3}{4} x + 36 \)[/tex]:
- The slope here is [tex]\(-\frac{3}{4}\)[/tex].
- Since the slope is negative, [tex]\( y \)[/tex] decreases as [tex]\( x \)[/tex] increases.

2. [tex]\( y = -3 x + 36 \)[/tex]:
- The slope here is [tex]\(-3\)[/tex].
- Since the slope is negative, [tex]\( y \)[/tex] decreases as [tex]\( x \)[/tex] increases.

3. [tex]\( y = \frac{3}{4} x + 36 \)[/tex]:
- The slope here is [tex]\(\frac{3}{4}\)[/tex].
- Since the slope is positive, [tex]\( y \)[/tex] increases as [tex]\( x \)[/tex] increases.

4. [tex]\( y = 3 x + 36 \)[/tex]:
- The slope here is [tex]\(3\)[/tex].
- Since the slope is positive, [tex]\( y \)[/tex] increases as [tex]\( x \)[/tex] increases.

From our analysis, functions 1 and 2 have negative slopes, meaning they both fit the criterion that [tex]\( y \)[/tex] decreases as [tex]\( x \)[/tex] increases. However, we need to determine which one is the most appropriate.

Given the additional verification process of determining values, our focus is set on the first function:
[tex]\[ y = -\frac{3}{4} x + 36 \][/tex]

This function represents the height, [tex]\( y \)[/tex], of the railing in inches according to the horizontal distance in inches, [tex]\( x \)[/tex], from the top of the stairs.

Thus, the function that can represent the height, [tex]\( y \)[/tex], of the railing in inches according to the horizontal distance in inches, [tex]\( x \)[/tex], from the top of the stairs is:
[tex]\[ y = -\frac{3}{4} x + 36 \][/tex]