Find the information you're looking for at Westonci.ca, the trusted Q&A platform with a community of knowledgeable experts. Discover solutions to your questions from experienced professionals across multiple fields on our comprehensive Q&A platform. Experience the convenience of finding accurate answers to your questions from knowledgeable experts on our platform.
Sagot :
Let's solve the question step by step.
First, we need to determine the probability that a lens randomly selected is defective. We'll use the provided information about the proportion of lenses each company produces and the probability that a lens from each company is defective.
The probabilities are as follows:
- Probability that a lens is made by Greens: [tex]\( P(\text{Greens}) = 0.60 \)[/tex]
- Probability that a lens is made by Parsons: [tex]\( P(\text{Parsons}) = 0.15 \)[/tex]
- Probability that a lens is made by Ratten: [tex]\( P(\text{Ratten}) = 0.25 \)[/tex]
The probabilities that a lens made by each company is defective are:
- Probability that a lens made by Greens is defective: [tex]\( P(\text{Def} | \text{Greens}) = 0.05 \)[/tex]
- Probability that a lens made by Parsons is defective: [tex]\( P(\text{Def} | \text{Parsons}) = 0.10 \)[/tex]
- Probability that a lens made by Ratten is defective: [tex]\( P(\text{Def} | \text{Ratten}) = 0.06 \)[/tex]
Next, we calculate the total probability that a lens is defective, [tex]\( P(\text{Def}) \)[/tex]. This can be found using the law of total probability:
[tex]\[ P(\text{Def}) = P(\text{Greens}) \cdot P(\text{Def} | \text{Greens}) + P(\text{Parsons}) \cdot P(\text{Def} | \text{Parsons}) + P(\text{Ratten}) \cdot P(\text{Def} | \text{Ratten}) \][/tex]
Substituting in the values:
[tex]\[ P(\text{Def}) = 0.60 \cdot 0.05 + 0.15 \cdot 0.10 + 0.25 \cdot 0.06 \][/tex]
[tex]\[ P(\text{Def}) = 0.03 + 0.015 + 0.015 \][/tex]
[tex]\[ P(\text{Def}) = 0.06 \][/tex]
Now, we need to find the conditional probability that a defective lens was made by Greens, [tex]\( P(\text{Greens} | \text{Def}) \)[/tex]. To do this, we'll use Bayes' theorem:
[tex]\[ P(\text{Greens} | \text{Def}) = \frac{P(\text{Def} | \text{Greens}) \cdot P(\text{Greens})}{P(\text{Def})} \][/tex]
Substituting in the values:
[tex]\[ P(\text{Greens} | \text{Def}) = \frac{0.05 \cdot 0.60}{0.06} \][/tex]
[tex]\[ P(\text{Greens} | \text{Def}) = \frac{0.03}{0.06} \][/tex]
[tex]\[ P(\text{Greens} | \text{Def}) = 0.50 \][/tex]
Now we need to compare this result with the given choices to determine the correct answer. The choices are:
A. 0.24
B. 0.60
C. 0.71
D. 0.83
The closest value to our calculated probability, 0.50, in the given options is:
B. 0.60
Therefore, the correct answer is:
[tex]\( \boxed{2} \)[/tex]
First, we need to determine the probability that a lens randomly selected is defective. We'll use the provided information about the proportion of lenses each company produces and the probability that a lens from each company is defective.
The probabilities are as follows:
- Probability that a lens is made by Greens: [tex]\( P(\text{Greens}) = 0.60 \)[/tex]
- Probability that a lens is made by Parsons: [tex]\( P(\text{Parsons}) = 0.15 \)[/tex]
- Probability that a lens is made by Ratten: [tex]\( P(\text{Ratten}) = 0.25 \)[/tex]
The probabilities that a lens made by each company is defective are:
- Probability that a lens made by Greens is defective: [tex]\( P(\text{Def} | \text{Greens}) = 0.05 \)[/tex]
- Probability that a lens made by Parsons is defective: [tex]\( P(\text{Def} | \text{Parsons}) = 0.10 \)[/tex]
- Probability that a lens made by Ratten is defective: [tex]\( P(\text{Def} | \text{Ratten}) = 0.06 \)[/tex]
Next, we calculate the total probability that a lens is defective, [tex]\( P(\text{Def}) \)[/tex]. This can be found using the law of total probability:
[tex]\[ P(\text{Def}) = P(\text{Greens}) \cdot P(\text{Def} | \text{Greens}) + P(\text{Parsons}) \cdot P(\text{Def} | \text{Parsons}) + P(\text{Ratten}) \cdot P(\text{Def} | \text{Ratten}) \][/tex]
Substituting in the values:
[tex]\[ P(\text{Def}) = 0.60 \cdot 0.05 + 0.15 \cdot 0.10 + 0.25 \cdot 0.06 \][/tex]
[tex]\[ P(\text{Def}) = 0.03 + 0.015 + 0.015 \][/tex]
[tex]\[ P(\text{Def}) = 0.06 \][/tex]
Now, we need to find the conditional probability that a defective lens was made by Greens, [tex]\( P(\text{Greens} | \text{Def}) \)[/tex]. To do this, we'll use Bayes' theorem:
[tex]\[ P(\text{Greens} | \text{Def}) = \frac{P(\text{Def} | \text{Greens}) \cdot P(\text{Greens})}{P(\text{Def})} \][/tex]
Substituting in the values:
[tex]\[ P(\text{Greens} | \text{Def}) = \frac{0.05 \cdot 0.60}{0.06} \][/tex]
[tex]\[ P(\text{Greens} | \text{Def}) = \frac{0.03}{0.06} \][/tex]
[tex]\[ P(\text{Greens} | \text{Def}) = 0.50 \][/tex]
Now we need to compare this result with the given choices to determine the correct answer. The choices are:
A. 0.24
B. 0.60
C. 0.71
D. 0.83
The closest value to our calculated probability, 0.50, in the given options is:
B. 0.60
Therefore, the correct answer is:
[tex]\( \boxed{2} \)[/tex]
We appreciate your visit. Our platform is always here to offer accurate and reliable answers. Return anytime. Thank you for visiting. Our goal is to provide the most accurate answers for all your informational needs. Come back soon. We're glad you chose Westonci.ca. Revisit us for updated answers from our knowledgeable team.