Welcome to Westonci.ca, where your questions are met with accurate answers from a community of experts and enthusiasts. Our platform provides a seamless experience for finding reliable answers from a knowledgeable network of professionals. Our platform provides a seamless experience for finding reliable answers from a network of experienced professionals.
Sagot :
Certainly! Let's solve the expression [tex]\(25x^2 y - 121\)[/tex] step by step.
### Step 1: Recognize the Form of the Expression
The given expression is [tex]\(25x^2 y - 121\)[/tex]. Notice that this expression resembles the form of a difference of squares, which is commonly written as [tex]\(a^2 - b^2\)[/tex].
### Step 2: Identify the Squares
In a difference of squares expression [tex]\(a^2 - b^2\)[/tex], we have two perfect squares subtracted from each other. Our task is to identify values of [tex]\(a\)[/tex] and [tex]\(b\)[/tex] such that:
[tex]\[ a^2 = 25x^2 y \][/tex]
[tex]\[ b^2 = 121 \][/tex]
#### Breaking Down the Components:
- [tex]\(25x^2 y\)[/tex] can be viewed as [tex]\((5x\sqrt{y})^2\)[/tex]
- [tex]\(121\)[/tex] is a perfect square and can be written as [tex]\(11^2\)[/tex]
So, we can identify:
[tex]\[ a = 5x\sqrt{y} \][/tex]
[tex]\[ b = 11 \][/tex]
### Step 3: Apply the Difference of Squares Formula
The difference of squares formula states:
[tex]\[ a^2 - b^2 = (a - b)(a + b) \][/tex]
Using our identified [tex]\(a\)[/tex] and [tex]\(b\)[/tex]:
[tex]\[ a = 5x\sqrt{y} \][/tex]
[tex]\[ b = 11 \][/tex]
We can rewrite the original expression [tex]\(25x^2 y - 121\)[/tex] as:
[tex]\[ (5x\sqrt{y})^2 - 11^2 \][/tex]
Applying the difference of squares formula:
[tex]\[ 25x^2 y - 121 = (5x\sqrt{y} - 11)(5x\sqrt{y} + 11) \][/tex]
### Conclusion
Thus, the factored form of the expression [tex]\(25x^2 y - 121\)[/tex] is:
[tex]\[ 25 x^2 y - 121 = (5x\sqrt{y} - 11)(5x\sqrt{y} + 11) \][/tex]
This completes the factorization of the given expression.
### Step 1: Recognize the Form of the Expression
The given expression is [tex]\(25x^2 y - 121\)[/tex]. Notice that this expression resembles the form of a difference of squares, which is commonly written as [tex]\(a^2 - b^2\)[/tex].
### Step 2: Identify the Squares
In a difference of squares expression [tex]\(a^2 - b^2\)[/tex], we have two perfect squares subtracted from each other. Our task is to identify values of [tex]\(a\)[/tex] and [tex]\(b\)[/tex] such that:
[tex]\[ a^2 = 25x^2 y \][/tex]
[tex]\[ b^2 = 121 \][/tex]
#### Breaking Down the Components:
- [tex]\(25x^2 y\)[/tex] can be viewed as [tex]\((5x\sqrt{y})^2\)[/tex]
- [tex]\(121\)[/tex] is a perfect square and can be written as [tex]\(11^2\)[/tex]
So, we can identify:
[tex]\[ a = 5x\sqrt{y} \][/tex]
[tex]\[ b = 11 \][/tex]
### Step 3: Apply the Difference of Squares Formula
The difference of squares formula states:
[tex]\[ a^2 - b^2 = (a - b)(a + b) \][/tex]
Using our identified [tex]\(a\)[/tex] and [tex]\(b\)[/tex]:
[tex]\[ a = 5x\sqrt{y} \][/tex]
[tex]\[ b = 11 \][/tex]
We can rewrite the original expression [tex]\(25x^2 y - 121\)[/tex] as:
[tex]\[ (5x\sqrt{y})^2 - 11^2 \][/tex]
Applying the difference of squares formula:
[tex]\[ 25x^2 y - 121 = (5x\sqrt{y} - 11)(5x\sqrt{y} + 11) \][/tex]
### Conclusion
Thus, the factored form of the expression [tex]\(25x^2 y - 121\)[/tex] is:
[tex]\[ 25 x^2 y - 121 = (5x\sqrt{y} - 11)(5x\sqrt{y} + 11) \][/tex]
This completes the factorization of the given expression.
Thank you for trusting us with your questions. We're here to help you find accurate answers quickly and efficiently. We appreciate your visit. Our platform is always here to offer accurate and reliable answers. Return anytime. We're glad you visited Westonci.ca. Return anytime for updated answers from our knowledgeable team.