Welcome to Westonci.ca, your ultimate destination for finding answers to a wide range of questions from experts. Experience the ease of finding accurate answers to your questions from a knowledgeable community of professionals. Connect with a community of professionals ready to help you find accurate solutions to your questions quickly and efficiently.
Sagot :
Certainly! Let's solve the expression [tex]\(25x^2 y - 121\)[/tex] step by step.
### Step 1: Recognize the Form of the Expression
The given expression is [tex]\(25x^2 y - 121\)[/tex]. Notice that this expression resembles the form of a difference of squares, which is commonly written as [tex]\(a^2 - b^2\)[/tex].
### Step 2: Identify the Squares
In a difference of squares expression [tex]\(a^2 - b^2\)[/tex], we have two perfect squares subtracted from each other. Our task is to identify values of [tex]\(a\)[/tex] and [tex]\(b\)[/tex] such that:
[tex]\[ a^2 = 25x^2 y \][/tex]
[tex]\[ b^2 = 121 \][/tex]
#### Breaking Down the Components:
- [tex]\(25x^2 y\)[/tex] can be viewed as [tex]\((5x\sqrt{y})^2\)[/tex]
- [tex]\(121\)[/tex] is a perfect square and can be written as [tex]\(11^2\)[/tex]
So, we can identify:
[tex]\[ a = 5x\sqrt{y} \][/tex]
[tex]\[ b = 11 \][/tex]
### Step 3: Apply the Difference of Squares Formula
The difference of squares formula states:
[tex]\[ a^2 - b^2 = (a - b)(a + b) \][/tex]
Using our identified [tex]\(a\)[/tex] and [tex]\(b\)[/tex]:
[tex]\[ a = 5x\sqrt{y} \][/tex]
[tex]\[ b = 11 \][/tex]
We can rewrite the original expression [tex]\(25x^2 y - 121\)[/tex] as:
[tex]\[ (5x\sqrt{y})^2 - 11^2 \][/tex]
Applying the difference of squares formula:
[tex]\[ 25x^2 y - 121 = (5x\sqrt{y} - 11)(5x\sqrt{y} + 11) \][/tex]
### Conclusion
Thus, the factored form of the expression [tex]\(25x^2 y - 121\)[/tex] is:
[tex]\[ 25 x^2 y - 121 = (5x\sqrt{y} - 11)(5x\sqrt{y} + 11) \][/tex]
This completes the factorization of the given expression.
### Step 1: Recognize the Form of the Expression
The given expression is [tex]\(25x^2 y - 121\)[/tex]. Notice that this expression resembles the form of a difference of squares, which is commonly written as [tex]\(a^2 - b^2\)[/tex].
### Step 2: Identify the Squares
In a difference of squares expression [tex]\(a^2 - b^2\)[/tex], we have two perfect squares subtracted from each other. Our task is to identify values of [tex]\(a\)[/tex] and [tex]\(b\)[/tex] such that:
[tex]\[ a^2 = 25x^2 y \][/tex]
[tex]\[ b^2 = 121 \][/tex]
#### Breaking Down the Components:
- [tex]\(25x^2 y\)[/tex] can be viewed as [tex]\((5x\sqrt{y})^2\)[/tex]
- [tex]\(121\)[/tex] is a perfect square and can be written as [tex]\(11^2\)[/tex]
So, we can identify:
[tex]\[ a = 5x\sqrt{y} \][/tex]
[tex]\[ b = 11 \][/tex]
### Step 3: Apply the Difference of Squares Formula
The difference of squares formula states:
[tex]\[ a^2 - b^2 = (a - b)(a + b) \][/tex]
Using our identified [tex]\(a\)[/tex] and [tex]\(b\)[/tex]:
[tex]\[ a = 5x\sqrt{y} \][/tex]
[tex]\[ b = 11 \][/tex]
We can rewrite the original expression [tex]\(25x^2 y - 121\)[/tex] as:
[tex]\[ (5x\sqrt{y})^2 - 11^2 \][/tex]
Applying the difference of squares formula:
[tex]\[ 25x^2 y - 121 = (5x\sqrt{y} - 11)(5x\sqrt{y} + 11) \][/tex]
### Conclusion
Thus, the factored form of the expression [tex]\(25x^2 y - 121\)[/tex] is:
[tex]\[ 25 x^2 y - 121 = (5x\sqrt{y} - 11)(5x\sqrt{y} + 11) \][/tex]
This completes the factorization of the given expression.
Thanks for using our service. We aim to provide the most accurate answers for all your queries. Visit us again for more insights. Thanks for stopping by. We strive to provide the best answers for all your questions. See you again soon. We're dedicated to helping you find the answers you need at Westonci.ca. Don't hesitate to return for more.