Welcome to Westonci.ca, where your questions are met with accurate answers from a community of experts and enthusiasts. Discover detailed answers to your questions from a wide network of experts on our comprehensive Q&A platform. Get immediate and reliable solutions to your questions from a community of experienced professionals on our platform.
Sagot :
Answer:
[tex]12\; {\rm m\cdot s^{-1}}[/tex].
Explanation:
In this question, it is given that:
- Acceleration is [tex]a = (2/5)\; {\rm m\cdot s^{-2}}[/tex], and
- Initial velocity is [tex]v_{0} = 10\; {\rm m\cdot s^{-1}}[/tex].
The goal is to find the velocity of the object after [tex]t = 5\; {\rm s}[/tex].
To find the new velocity, note that acceleration is the rate of change in velocity. An acceleration of [tex]a = (2/5)\; {\rm m\cdot s^{-2}}[/tex] means that velocity of the object increases by [tex](2/5)\; {\rm m\cdot s^{-1}}[/tex] every second. After [tex]t = 5\; {\rm s}[/tex], velocity would have increased by a total of:
[tex]\displaystyle a \, t = \left(\frac{2}{5}\; {\rm m\cdot s^{-2}}\right)\, (5\; {\rm s}) = 2\; {\rm m\cdot s^{-1}}[/tex].
This increase in velocity is in addition to the initial velocity of [tex]v_{0} = 10\; {\rm m\cdot s^{-1}}[/tex]. Hence, the actual velocity after [tex]t = 5\; {\rm s}[/tex] would be the sum of the original velocity and the increase from the acceleration:
[tex]\begin{aligned} v &= v_{0} + a\, t \\ &= 10\; {\rm m\cdot s^{-1}} + \left(\frac{2}{5}\; {\rm m\cdot s^{-2}}\right)\, (5\; {\rm s}) \\ &= 10\; {\rm m\cdot s^{-1}} + 2\; {\rm m\cdot s^{-1}} \\ &= 12\; {\rm m\cdot s^{-1}}\end{aligned}[/tex].
In other words, the velocity of the object would be [tex]12\; {\rm m\cdot s^{-1}}[/tex] at [tex]t = 5\; {\rm s}[/tex].
We hope you found what you were looking for. Feel free to revisit us for more answers and updated information. Thanks for using our platform. We aim to provide accurate and up-to-date answers to all your queries. Come back soon. Keep exploring Westonci.ca for more insightful answers to your questions. We're here to help.