Westonci.ca offers fast, accurate answers to your questions. Join our community and get the insights you need now. Discover a wealth of knowledge from professionals across various disciplines on our user-friendly Q&A platform. Connect with a community of professionals ready to help you find accurate solutions to your questions quickly and efficiently.
Sagot :
To determine the distance covered by the rocket, we will use the kinematic equation for uniformly accelerated motion. The equation is:
[tex]\[ \text{distance} = \text{initial velocity} \times \text{time} + \frac{1}{2} \times \text{acceleration} \times (\text{time})^2 \][/tex]
Given values:
- Initial velocity, [tex]\( u = 0 \)[/tex] meters/second (since the rocket is initially at rest)
- Acceleration, [tex]\( a = 99.0 \)[/tex] meters/second[tex]\(^2\)[/tex]
- Time, [tex]\( t = 4.50 \)[/tex] seconds
Substituting these values into the equation:
[tex]\[ \text{distance} = 0 \times 4.50 + \frac{1}{2} \times 99.0 \times (4.50)^2 \][/tex]
Since the initial velocity term [tex]\( 0 \times 4.50 \)[/tex] is [tex]\( 0 \)[/tex], we simplify the equation to:
[tex]\[ \text{distance} = \frac{1}{2} \times 99.0 \times (4.50)^2 \][/tex]
Calculating:
1. First, calculate the square of the time:
[tex]\[ (4.50)^2 = 20.25 \][/tex]
2. Then multiply by the acceleration:
[tex]\[ 99.0 \times 20.25 = 2004.75 \][/tex]
3. Now, divide by 2:
[tex]\[ \frac{2004.75}{2} = 1002.375 \][/tex]
Thus, the distance covered by the rocket is:
[tex]\[ 1002.375 \text{ meters} \][/tex]
Looking at the options given:
A. [tex]\( 2.50 \times 10^2 \)[/tex] meters
B. [tex]\( 1.00 \times 10^3 \)[/tex] meters
C. [tex]\( 5.05 \times 10^2 \)[/tex] meters
D. [tex]\( 2.00 \times 10^3 \)[/tex] meters
E. [tex]\( 1.00 \times 10^2 \)[/tex] meters
The correct answer is:
[tex]\[ \boxed{1.00 \times 10^3 \text{ meters}} \][/tex]
So, the correct answer is [tex]\( B \)[/tex].
[tex]\[ \text{distance} = \text{initial velocity} \times \text{time} + \frac{1}{2} \times \text{acceleration} \times (\text{time})^2 \][/tex]
Given values:
- Initial velocity, [tex]\( u = 0 \)[/tex] meters/second (since the rocket is initially at rest)
- Acceleration, [tex]\( a = 99.0 \)[/tex] meters/second[tex]\(^2\)[/tex]
- Time, [tex]\( t = 4.50 \)[/tex] seconds
Substituting these values into the equation:
[tex]\[ \text{distance} = 0 \times 4.50 + \frac{1}{2} \times 99.0 \times (4.50)^2 \][/tex]
Since the initial velocity term [tex]\( 0 \times 4.50 \)[/tex] is [tex]\( 0 \)[/tex], we simplify the equation to:
[tex]\[ \text{distance} = \frac{1}{2} \times 99.0 \times (4.50)^2 \][/tex]
Calculating:
1. First, calculate the square of the time:
[tex]\[ (4.50)^2 = 20.25 \][/tex]
2. Then multiply by the acceleration:
[tex]\[ 99.0 \times 20.25 = 2004.75 \][/tex]
3. Now, divide by 2:
[tex]\[ \frac{2004.75}{2} = 1002.375 \][/tex]
Thus, the distance covered by the rocket is:
[tex]\[ 1002.375 \text{ meters} \][/tex]
Looking at the options given:
A. [tex]\( 2.50 \times 10^2 \)[/tex] meters
B. [tex]\( 1.00 \times 10^3 \)[/tex] meters
C. [tex]\( 5.05 \times 10^2 \)[/tex] meters
D. [tex]\( 2.00 \times 10^3 \)[/tex] meters
E. [tex]\( 1.00 \times 10^2 \)[/tex] meters
The correct answer is:
[tex]\[ \boxed{1.00 \times 10^3 \text{ meters}} \][/tex]
So, the correct answer is [tex]\( B \)[/tex].
We hope this information was helpful. Feel free to return anytime for more answers to your questions and concerns. Thanks for using our service. We're always here to provide accurate and up-to-date answers to all your queries. Discover more at Westonci.ca. Return for the latest expert answers and updates on various topics.