Welcome to Westonci.ca, where you can find answers to all your questions from a community of experienced professionals. Explore comprehensive solutions to your questions from knowledgeable professionals across various fields on our platform. Discover detailed answers to your questions from a wide network of experts on our comprehensive Q&A platform.
Sagot :
To determine the distance covered by the rocket, we will use the kinematic equation for uniformly accelerated motion. The equation is:
[tex]\[ \text{distance} = \text{initial velocity} \times \text{time} + \frac{1}{2} \times \text{acceleration} \times (\text{time})^2 \][/tex]
Given values:
- Initial velocity, [tex]\( u = 0 \)[/tex] meters/second (since the rocket is initially at rest)
- Acceleration, [tex]\( a = 99.0 \)[/tex] meters/second[tex]\(^2\)[/tex]
- Time, [tex]\( t = 4.50 \)[/tex] seconds
Substituting these values into the equation:
[tex]\[ \text{distance} = 0 \times 4.50 + \frac{1}{2} \times 99.0 \times (4.50)^2 \][/tex]
Since the initial velocity term [tex]\( 0 \times 4.50 \)[/tex] is [tex]\( 0 \)[/tex], we simplify the equation to:
[tex]\[ \text{distance} = \frac{1}{2} \times 99.0 \times (4.50)^2 \][/tex]
Calculating:
1. First, calculate the square of the time:
[tex]\[ (4.50)^2 = 20.25 \][/tex]
2. Then multiply by the acceleration:
[tex]\[ 99.0 \times 20.25 = 2004.75 \][/tex]
3. Now, divide by 2:
[tex]\[ \frac{2004.75}{2} = 1002.375 \][/tex]
Thus, the distance covered by the rocket is:
[tex]\[ 1002.375 \text{ meters} \][/tex]
Looking at the options given:
A. [tex]\( 2.50 \times 10^2 \)[/tex] meters
B. [tex]\( 1.00 \times 10^3 \)[/tex] meters
C. [tex]\( 5.05 \times 10^2 \)[/tex] meters
D. [tex]\( 2.00 \times 10^3 \)[/tex] meters
E. [tex]\( 1.00 \times 10^2 \)[/tex] meters
The correct answer is:
[tex]\[ \boxed{1.00 \times 10^3 \text{ meters}} \][/tex]
So, the correct answer is [tex]\( B \)[/tex].
[tex]\[ \text{distance} = \text{initial velocity} \times \text{time} + \frac{1}{2} \times \text{acceleration} \times (\text{time})^2 \][/tex]
Given values:
- Initial velocity, [tex]\( u = 0 \)[/tex] meters/second (since the rocket is initially at rest)
- Acceleration, [tex]\( a = 99.0 \)[/tex] meters/second[tex]\(^2\)[/tex]
- Time, [tex]\( t = 4.50 \)[/tex] seconds
Substituting these values into the equation:
[tex]\[ \text{distance} = 0 \times 4.50 + \frac{1}{2} \times 99.0 \times (4.50)^2 \][/tex]
Since the initial velocity term [tex]\( 0 \times 4.50 \)[/tex] is [tex]\( 0 \)[/tex], we simplify the equation to:
[tex]\[ \text{distance} = \frac{1}{2} \times 99.0 \times (4.50)^2 \][/tex]
Calculating:
1. First, calculate the square of the time:
[tex]\[ (4.50)^2 = 20.25 \][/tex]
2. Then multiply by the acceleration:
[tex]\[ 99.0 \times 20.25 = 2004.75 \][/tex]
3. Now, divide by 2:
[tex]\[ \frac{2004.75}{2} = 1002.375 \][/tex]
Thus, the distance covered by the rocket is:
[tex]\[ 1002.375 \text{ meters} \][/tex]
Looking at the options given:
A. [tex]\( 2.50 \times 10^2 \)[/tex] meters
B. [tex]\( 1.00 \times 10^3 \)[/tex] meters
C. [tex]\( 5.05 \times 10^2 \)[/tex] meters
D. [tex]\( 2.00 \times 10^3 \)[/tex] meters
E. [tex]\( 1.00 \times 10^2 \)[/tex] meters
The correct answer is:
[tex]\[ \boxed{1.00 \times 10^3 \text{ meters}} \][/tex]
So, the correct answer is [tex]\( B \)[/tex].
Thanks for using our platform. We aim to provide accurate and up-to-date answers to all your queries. Come back soon. Thank you for choosing our platform. We're dedicated to providing the best answers for all your questions. Visit us again. Get the answers you need at Westonci.ca. Stay informed by returning for our latest expert advice.