Discover the answers to your questions at Westonci.ca, where experts share their knowledge and insights with you. Get expert answers to your questions quickly and accurately from our dedicated community of professionals. Join our platform to connect with experts ready to provide precise answers to your questions in different areas.
Sagot :
Certainly! Let's tackle these questions step-by-step.
### 1. Brenda's Future Savings Calculation
Brenda deposits RS 5000 into a savings account. The interest rate structure changes as follows:
- For the first 3 years, the interest rate is 14% per annum, compounded semi-annually.
- For the next 4 years, the interest rate is 12% per annum, compounded monthly.
#### Step 1: Calculate the future value of the savings after the first 3 years
Given the interest rate is compounded semi-annually, we have:
- Principal: [tex]\( P = RS 5000 \)[/tex]
- Annual interest rate [tex]\( r = 14\% = 0.14 \)[/tex]
- Number of times interest is compounded per year [tex]\( n = 2 \)[/tex]
- Number of years [tex]\( t = 3 \)[/tex]
The formula for compound interest is:
[tex]\[ A = P \left(1 + \frac{r}{n}\right)^{nt} \][/tex]
Substituting the values:
[tex]\[ A_1 = 5000 \left(1 + \frac{0.14}{2}\right)^{2 \times 3} \][/tex]
[tex]\[ A_1 = 5000 \left(1 + 0.07\right)^6 \][/tex]
[tex]\[ A_1 = 5000 \left(1.07\right)^6 \][/tex]
After calculating, we get:
[tex]\[ A_1 = 7503.65 \][/tex]
#### Step 2: Calculate the future value of the savings after the next 4 years
Now, the interest rate changes to 12% per annum, compounded monthly. Using the amount calculated from Step 1 as the new principal, we have:
- New Principal: [tex]\( P = 7503.65 \)[/tex]
- Annual interest rate [tex]\( r = 12\% = 0.12 \)[/tex]
- Number of times interest is compounded per year [tex]\( n = 12 \)[/tex]
- Number of years [tex]\( t = 4 \)[/tex]
Using the compound interest formula again:
[tex]\[ A = P \left(1 + \frac{r}{n}\right)^{nt} \][/tex]
Substituting the values:
[tex]\[ A_2 = 7503.65 \left(1 + \frac{0.12}{12}\right)^{12 \times 4} \][/tex]
[tex]\[ A_2 = 7503.65 \left(1 + 0.01\right)^{48} \][/tex]
[tex]\[ A_2 = 7503.65 \left(1.01\right)^{48} \][/tex]
After calculating, we get:
[tex]\[ A_2 = 12097.58 \][/tex]
Thus, the future value of Brenda's savings at the end of the seventh year is:
[tex]\[ RS 12097.58 \][/tex]
### 2. R40 000 Investment Calculation
R40 000 is invested for 5 years at 16% per annum compounded monthly.
#### Part (a): Calculate the future value using the nominal rate
Given:
- Principal: [tex]\( P = R 40,000 \)[/tex]
- Annual interest rate [tex]\( r = 16\% = 0.16 \)[/tex]
- Number of times interest is compounded per year [tex]\( n = 12 \)[/tex]
- Number of years [tex]\( t = 5 \)[/tex]
Using the compound interest formula:
[tex]\[ FV = P \left(1 + \frac{r}{n}\right)^{nt} \][/tex]
Substituting the values:
[tex]\[ FV = 40000 \left(1 + \frac{0.16}{12}\right)^{12 \times 5} \][/tex]
[tex]\[ FV = 40000 \left(1 + 0.0133333\right)^{60} \][/tex]
[tex]\[ FV = 40000 \left(1.0133333\right)^{60} \][/tex]
After calculating, we get:
[tex]\[ FV = 88552.28 \][/tex]
Thus, the future value of the investment using the nominal rate is:
[tex]\[ R 88552.28 \][/tex]
#### Part (b): Convert the nominal rate to the equivalent effective annual rate
The formula to convert a nominal rate compounded [tex]\( n \)[/tex] times per year to an effective annual rate [tex]\( (EAR) \)[/tex] is:
[tex]\[ EAR = \left(1 + \frac{r}{n}\right)^n - 1 \][/tex]
Substituting the values:
[tex]\[ EAR = \left(1 + \frac{0.16}{12}\right)^{12} - 1 \][/tex]
[tex]\[ EAR = \left(1 + 0.0133333\right)^{12} - 1 \][/tex]
[tex]\[ EAR = 1.1722708 - 1 \][/tex]
After calculating, we get:
[tex]\[ EAR = 0.1722708 \][/tex]
Thus, the effective annual rate is:
[tex]\[ 17.23\% \][/tex]
#### Part (c): Use the annual effective rate to calculate the future value
Using the effective annual rate, we recalculate the future value over 5 years:
- Principal: [tex]\( P = R 40,000 \)[/tex]
- Effective annual rate [tex]\( r_{eff} = 17.23\% = 0.1722708 \)[/tex]
- Number of years [tex]\( t = 5 \)[/tex]
Using the compound interest formula:
[tex]\[ FV = P \left(1 + r_{eff}\right)^t \][/tex]
Substituting the values:
[tex]\[ FV = 40000 \left(1 + 0.1722708\right)^5 \][/tex]
[tex]\[ FV = 40000 \left(1.1722708\right)^5 \][/tex]
After calculating, we get:
[tex]\[ FV = 88552.28 \][/tex]
Thus, the future value of the investment using the annual effective rate is:
[tex]\[ R 88552.28 \][/tex]
### 1. Brenda's Future Savings Calculation
Brenda deposits RS 5000 into a savings account. The interest rate structure changes as follows:
- For the first 3 years, the interest rate is 14% per annum, compounded semi-annually.
- For the next 4 years, the interest rate is 12% per annum, compounded monthly.
#### Step 1: Calculate the future value of the savings after the first 3 years
Given the interest rate is compounded semi-annually, we have:
- Principal: [tex]\( P = RS 5000 \)[/tex]
- Annual interest rate [tex]\( r = 14\% = 0.14 \)[/tex]
- Number of times interest is compounded per year [tex]\( n = 2 \)[/tex]
- Number of years [tex]\( t = 3 \)[/tex]
The formula for compound interest is:
[tex]\[ A = P \left(1 + \frac{r}{n}\right)^{nt} \][/tex]
Substituting the values:
[tex]\[ A_1 = 5000 \left(1 + \frac{0.14}{2}\right)^{2 \times 3} \][/tex]
[tex]\[ A_1 = 5000 \left(1 + 0.07\right)^6 \][/tex]
[tex]\[ A_1 = 5000 \left(1.07\right)^6 \][/tex]
After calculating, we get:
[tex]\[ A_1 = 7503.65 \][/tex]
#### Step 2: Calculate the future value of the savings after the next 4 years
Now, the interest rate changes to 12% per annum, compounded monthly. Using the amount calculated from Step 1 as the new principal, we have:
- New Principal: [tex]\( P = 7503.65 \)[/tex]
- Annual interest rate [tex]\( r = 12\% = 0.12 \)[/tex]
- Number of times interest is compounded per year [tex]\( n = 12 \)[/tex]
- Number of years [tex]\( t = 4 \)[/tex]
Using the compound interest formula again:
[tex]\[ A = P \left(1 + \frac{r}{n}\right)^{nt} \][/tex]
Substituting the values:
[tex]\[ A_2 = 7503.65 \left(1 + \frac{0.12}{12}\right)^{12 \times 4} \][/tex]
[tex]\[ A_2 = 7503.65 \left(1 + 0.01\right)^{48} \][/tex]
[tex]\[ A_2 = 7503.65 \left(1.01\right)^{48} \][/tex]
After calculating, we get:
[tex]\[ A_2 = 12097.58 \][/tex]
Thus, the future value of Brenda's savings at the end of the seventh year is:
[tex]\[ RS 12097.58 \][/tex]
### 2. R40 000 Investment Calculation
R40 000 is invested for 5 years at 16% per annum compounded monthly.
#### Part (a): Calculate the future value using the nominal rate
Given:
- Principal: [tex]\( P = R 40,000 \)[/tex]
- Annual interest rate [tex]\( r = 16\% = 0.16 \)[/tex]
- Number of times interest is compounded per year [tex]\( n = 12 \)[/tex]
- Number of years [tex]\( t = 5 \)[/tex]
Using the compound interest formula:
[tex]\[ FV = P \left(1 + \frac{r}{n}\right)^{nt} \][/tex]
Substituting the values:
[tex]\[ FV = 40000 \left(1 + \frac{0.16}{12}\right)^{12 \times 5} \][/tex]
[tex]\[ FV = 40000 \left(1 + 0.0133333\right)^{60} \][/tex]
[tex]\[ FV = 40000 \left(1.0133333\right)^{60} \][/tex]
After calculating, we get:
[tex]\[ FV = 88552.28 \][/tex]
Thus, the future value of the investment using the nominal rate is:
[tex]\[ R 88552.28 \][/tex]
#### Part (b): Convert the nominal rate to the equivalent effective annual rate
The formula to convert a nominal rate compounded [tex]\( n \)[/tex] times per year to an effective annual rate [tex]\( (EAR) \)[/tex] is:
[tex]\[ EAR = \left(1 + \frac{r}{n}\right)^n - 1 \][/tex]
Substituting the values:
[tex]\[ EAR = \left(1 + \frac{0.16}{12}\right)^{12} - 1 \][/tex]
[tex]\[ EAR = \left(1 + 0.0133333\right)^{12} - 1 \][/tex]
[tex]\[ EAR = 1.1722708 - 1 \][/tex]
After calculating, we get:
[tex]\[ EAR = 0.1722708 \][/tex]
Thus, the effective annual rate is:
[tex]\[ 17.23\% \][/tex]
#### Part (c): Use the annual effective rate to calculate the future value
Using the effective annual rate, we recalculate the future value over 5 years:
- Principal: [tex]\( P = R 40,000 \)[/tex]
- Effective annual rate [tex]\( r_{eff} = 17.23\% = 0.1722708 \)[/tex]
- Number of years [tex]\( t = 5 \)[/tex]
Using the compound interest formula:
[tex]\[ FV = P \left(1 + r_{eff}\right)^t \][/tex]
Substituting the values:
[tex]\[ FV = 40000 \left(1 + 0.1722708\right)^5 \][/tex]
[tex]\[ FV = 40000 \left(1.1722708\right)^5 \][/tex]
After calculating, we get:
[tex]\[ FV = 88552.28 \][/tex]
Thus, the future value of the investment using the annual effective rate is:
[tex]\[ R 88552.28 \][/tex]
We appreciate your visit. Our platform is always here to offer accurate and reliable answers. Return anytime. We hope our answers were useful. Return anytime for more information and answers to any other questions you have. Thank you for visiting Westonci.ca. Stay informed by coming back for more detailed answers.