Welcome to Westonci.ca, the Q&A platform where your questions are met with detailed answers from experienced experts. Get the answers you need quickly and accurately from a dedicated community of experts on our Q&A platform. Discover detailed answers to your questions from a wide network of experts on our comprehensive Q&A platform.
Sagot :
To test whether events [tex]\( B \)[/tex] and [tex]\( C \)[/tex] are independent, we need to compare [tex]\( P(B \cap C) \)[/tex] with [tex]\( P(B) \cdot P(C) \)[/tex].
### Step-by-Step Solution:
1. Identify the probabilities from the table:
- [tex]\( P(B) = 0.30 \)[/tex]
- [tex]\( P(C) = 0.30 \)[/tex]
2. Calculate the joint probability [tex]\( P(B \cap C) \)[/tex]:
Since [tex]\( A \)[/tex], [tex]\( B \)[/tex], and [tex]\( C \)[/tex] are mutually exclusive, there is no overlap between these events. Hence,
[tex]\[ P(B \cap C) = 0.0 \][/tex]
3. Calculate the product [tex]\( P(B) \cdot P(C) \)[/tex]:
[tex]\[ P(B) \cdot P(C) = 0.30 \times 0.30 = 0.09 \][/tex]
4. Compare [tex]\( P(B \cap C) \)[/tex] with [tex]\( P(B) \cdot P(C) \)[/tex]:
[tex]\[ P(B \cap C) = 0.0 \quad \text{and} \quad P(B) \cdot P(C) = 0.09 \][/tex]
Since [tex]\( P(B \cap C) \neq P(B) \cdot P(C) \)[/tex], the events [tex]\( B \)[/tex] and [tex]\( C \)[/tex] are not independent.
### Answer:
A. No, they are not independent because [tex]\( P(B \cap C) \neq P(B) \cdot P(C) \)[/tex]. [tex]\( P(B \cap C) = 0.0 \)[/tex] and [tex]\( P(B) \cdot P(C) = 0.09 \)[/tex].
So, the filled in answer choice is:
```markdown
A. No, they are not independent because [tex]\( P(B \cap C) \neq P(B) \cdot P(C) \)[/tex]. [tex]\( P(B \cap C) = 0.0 \)[/tex] and [tex]\( P(B) \cdot P(C) = 0.09 \)[/tex].
```
### Step-by-Step Solution:
1. Identify the probabilities from the table:
- [tex]\( P(B) = 0.30 \)[/tex]
- [tex]\( P(C) = 0.30 \)[/tex]
2. Calculate the joint probability [tex]\( P(B \cap C) \)[/tex]:
Since [tex]\( A \)[/tex], [tex]\( B \)[/tex], and [tex]\( C \)[/tex] are mutually exclusive, there is no overlap between these events. Hence,
[tex]\[ P(B \cap C) = 0.0 \][/tex]
3. Calculate the product [tex]\( P(B) \cdot P(C) \)[/tex]:
[tex]\[ P(B) \cdot P(C) = 0.30 \times 0.30 = 0.09 \][/tex]
4. Compare [tex]\( P(B \cap C) \)[/tex] with [tex]\( P(B) \cdot P(C) \)[/tex]:
[tex]\[ P(B \cap C) = 0.0 \quad \text{and} \quad P(B) \cdot P(C) = 0.09 \][/tex]
Since [tex]\( P(B \cap C) \neq P(B) \cdot P(C) \)[/tex], the events [tex]\( B \)[/tex] and [tex]\( C \)[/tex] are not independent.
### Answer:
A. No, they are not independent because [tex]\( P(B \cap C) \neq P(B) \cdot P(C) \)[/tex]. [tex]\( P(B \cap C) = 0.0 \)[/tex] and [tex]\( P(B) \cdot P(C) = 0.09 \)[/tex].
So, the filled in answer choice is:
```markdown
A. No, they are not independent because [tex]\( P(B \cap C) \neq P(B) \cdot P(C) \)[/tex]. [tex]\( P(B \cap C) = 0.0 \)[/tex] and [tex]\( P(B) \cdot P(C) = 0.09 \)[/tex].
```
Thank you for visiting. Our goal is to provide the most accurate answers for all your informational needs. Come back soon. We hope you found this helpful. Feel free to come back anytime for more accurate answers and updated information. Your questions are important to us at Westonci.ca. Visit again for expert answers and reliable information.