Westonci.ca is your go-to source for answers, with a community ready to provide accurate and timely information. Experience the convenience of getting reliable answers to your questions from a vast network of knowledgeable experts. Discover in-depth answers to your questions from a wide network of professionals on our user-friendly Q&A platform.
Sagot :
To test whether events [tex]\( B \)[/tex] and [tex]\( C \)[/tex] are independent, we need to compare [tex]\( P(B \cap C) \)[/tex] with [tex]\( P(B) \cdot P(C) \)[/tex].
### Step-by-Step Solution:
1. Identify the probabilities from the table:
- [tex]\( P(B) = 0.30 \)[/tex]
- [tex]\( P(C) = 0.30 \)[/tex]
2. Calculate the joint probability [tex]\( P(B \cap C) \)[/tex]:
Since [tex]\( A \)[/tex], [tex]\( B \)[/tex], and [tex]\( C \)[/tex] are mutually exclusive, there is no overlap between these events. Hence,
[tex]\[ P(B \cap C) = 0.0 \][/tex]
3. Calculate the product [tex]\( P(B) \cdot P(C) \)[/tex]:
[tex]\[ P(B) \cdot P(C) = 0.30 \times 0.30 = 0.09 \][/tex]
4. Compare [tex]\( P(B \cap C) \)[/tex] with [tex]\( P(B) \cdot P(C) \)[/tex]:
[tex]\[ P(B \cap C) = 0.0 \quad \text{and} \quad P(B) \cdot P(C) = 0.09 \][/tex]
Since [tex]\( P(B \cap C) \neq P(B) \cdot P(C) \)[/tex], the events [tex]\( B \)[/tex] and [tex]\( C \)[/tex] are not independent.
### Answer:
A. No, they are not independent because [tex]\( P(B \cap C) \neq P(B) \cdot P(C) \)[/tex]. [tex]\( P(B \cap C) = 0.0 \)[/tex] and [tex]\( P(B) \cdot P(C) = 0.09 \)[/tex].
So, the filled in answer choice is:
```markdown
A. No, they are not independent because [tex]\( P(B \cap C) \neq P(B) \cdot P(C) \)[/tex]. [tex]\( P(B \cap C) = 0.0 \)[/tex] and [tex]\( P(B) \cdot P(C) = 0.09 \)[/tex].
```
### Step-by-Step Solution:
1. Identify the probabilities from the table:
- [tex]\( P(B) = 0.30 \)[/tex]
- [tex]\( P(C) = 0.30 \)[/tex]
2. Calculate the joint probability [tex]\( P(B \cap C) \)[/tex]:
Since [tex]\( A \)[/tex], [tex]\( B \)[/tex], and [tex]\( C \)[/tex] are mutually exclusive, there is no overlap between these events. Hence,
[tex]\[ P(B \cap C) = 0.0 \][/tex]
3. Calculate the product [tex]\( P(B) \cdot P(C) \)[/tex]:
[tex]\[ P(B) \cdot P(C) = 0.30 \times 0.30 = 0.09 \][/tex]
4. Compare [tex]\( P(B \cap C) \)[/tex] with [tex]\( P(B) \cdot P(C) \)[/tex]:
[tex]\[ P(B \cap C) = 0.0 \quad \text{and} \quad P(B) \cdot P(C) = 0.09 \][/tex]
Since [tex]\( P(B \cap C) \neq P(B) \cdot P(C) \)[/tex], the events [tex]\( B \)[/tex] and [tex]\( C \)[/tex] are not independent.
### Answer:
A. No, they are not independent because [tex]\( P(B \cap C) \neq P(B) \cdot P(C) \)[/tex]. [tex]\( P(B \cap C) = 0.0 \)[/tex] and [tex]\( P(B) \cdot P(C) = 0.09 \)[/tex].
So, the filled in answer choice is:
```markdown
A. No, they are not independent because [tex]\( P(B \cap C) \neq P(B) \cdot P(C) \)[/tex]. [tex]\( P(B \cap C) = 0.0 \)[/tex] and [tex]\( P(B) \cdot P(C) = 0.09 \)[/tex].
```
Thank you for your visit. We're committed to providing you with the best information available. Return anytime for more. Thank you for visiting. Our goal is to provide the most accurate answers for all your informational needs. Come back soon. Thank you for choosing Westonci.ca as your information source. We look forward to your next visit.