Welcome to Westonci.ca, the ultimate question and answer platform. Get expert answers to your questions quickly and accurately. Connect with a community of professionals ready to provide precise solutions to your questions quickly and accurately. Get precise and detailed answers to your questions from a knowledgeable community of experts on our Q&A platform.
Sagot :
To determine which compound exhibits the strongest overall intermolecular forces based on the temperature changes observed during evaporation, we need to understand the relationship between temperature change and intermolecular forces.
When a liquid evaporates, it absorbs heat from its surroundings, leading to a temperature drop. The extent of this temperature drop can be related to the strength of the intermolecular forces. The following general principles apply:
1. Stronger Intermolecular Forces: If a compound has strong intermolecular forces, it will require more energy to break these forces and allow the molecules to escape into the gaseous phase. As a result, the temperature drop will be smaller because less heat is taken away from the liquid.
2. Weaker Intermolecular Forces: Conversely, if a compound has weak intermolecular forces, it will require less energy for the molecules to evaporate, leading to a larger temperature drop as more heat is absorbed from the surroundings.
Given this, let's analyze the data table and identify the compound with the smallest temperature change:
[tex]\[ \begin{tabular}{|c|c|} \hline \text{Compound} & \Delta T (^{\circ} C) \\ \hline \text{C}_4\text{H}_{10} & -19.6 \\ \hline \text{C}_4\text{H}_8\text{O} & -12.1 \\ \hline \text{C}_4\text{H}_9\text{OH} & -4.3 \\ \hline \end{tabular} \][/tex]
1. For [tex]\(\text{C}_4\text{H}_{10}\)[/tex], the temperature change is [tex]\(-19.6 ^\circ \text{C}\)[/tex].
2. For [tex]\(\text{C}_4\text{H}_8\text{O}\)[/tex], the temperature change is [tex]\(-12.1 ^\circ \text{C}\)[/tex].
3. For [tex]\(\text{C}_4\text{H}_9\text{OH}\)[/tex], the temperature change is [tex]\(-4.3 ^\circ \text{C}\)[/tex].
Among these, [tex]\(\text{C}_4\text{H}_9\text{OH}\)[/tex] has the smallest temperature change of [tex]\(-4.3 ^\circ \text{C}\)[/tex]. This indicates that [tex]\(\text{C}_4\text{H}_9\text{OH}\)[/tex] has the strongest overall intermolecular forces as it experienced the least amount of temperature change when evaporating, meaning it required more energy to break the intermolecular bonds.
Thus, the compound [tex]\(\text{C}_4\text{H}_9\text{OH}\)[/tex] exhibits the strongest overall intermolecular forces.
When a liquid evaporates, it absorbs heat from its surroundings, leading to a temperature drop. The extent of this temperature drop can be related to the strength of the intermolecular forces. The following general principles apply:
1. Stronger Intermolecular Forces: If a compound has strong intermolecular forces, it will require more energy to break these forces and allow the molecules to escape into the gaseous phase. As a result, the temperature drop will be smaller because less heat is taken away from the liquid.
2. Weaker Intermolecular Forces: Conversely, if a compound has weak intermolecular forces, it will require less energy for the molecules to evaporate, leading to a larger temperature drop as more heat is absorbed from the surroundings.
Given this, let's analyze the data table and identify the compound with the smallest temperature change:
[tex]\[ \begin{tabular}{|c|c|} \hline \text{Compound} & \Delta T (^{\circ} C) \\ \hline \text{C}_4\text{H}_{10} & -19.6 \\ \hline \text{C}_4\text{H}_8\text{O} & -12.1 \\ \hline \text{C}_4\text{H}_9\text{OH} & -4.3 \\ \hline \end{tabular} \][/tex]
1. For [tex]\(\text{C}_4\text{H}_{10}\)[/tex], the temperature change is [tex]\(-19.6 ^\circ \text{C}\)[/tex].
2. For [tex]\(\text{C}_4\text{H}_8\text{O}\)[/tex], the temperature change is [tex]\(-12.1 ^\circ \text{C}\)[/tex].
3. For [tex]\(\text{C}_4\text{H}_9\text{OH}\)[/tex], the temperature change is [tex]\(-4.3 ^\circ \text{C}\)[/tex].
Among these, [tex]\(\text{C}_4\text{H}_9\text{OH}\)[/tex] has the smallest temperature change of [tex]\(-4.3 ^\circ \text{C}\)[/tex]. This indicates that [tex]\(\text{C}_4\text{H}_9\text{OH}\)[/tex] has the strongest overall intermolecular forces as it experienced the least amount of temperature change when evaporating, meaning it required more energy to break the intermolecular bonds.
Thus, the compound [tex]\(\text{C}_4\text{H}_9\text{OH}\)[/tex] exhibits the strongest overall intermolecular forces.
We hope our answers were useful. Return anytime for more information and answers to any other questions you have. We hope this was helpful. Please come back whenever you need more information or answers to your queries. Westonci.ca is here to provide the answers you seek. Return often for more expert solutions.