Discover the answers you need at Westonci.ca, a dynamic Q&A platform where knowledge is shared freely by a community of experts. Our platform connects you with professionals ready to provide precise answers to all your questions in various areas of expertise. Explore comprehensive solutions to your questions from a wide range of professionals on our user-friendly platform.
Sagot :
To determine which function has exactly three distinct real zeros, let's analyze each given function and find its distinct real zeros.
### Function A: [tex]\( h(x) = (x-9)^2 (x-4)^2 \)[/tex]
This is a product of two squared terms:
[tex]\( (x-9)^2 \)[/tex] which has a double zero at [tex]\( x = 9 \)[/tex]
[tex]\( (x-4)^2 \)[/tex] which has a double zero at [tex]\( x = 4 \)[/tex]
Therefore, the distinct real zeros are [tex]\( x = 9 \)[/tex] and [tex]\( x = 4 \)[/tex]. So, there are 2 distinct real zeros.
### Function B: [tex]\( h(x) = x(x+7)^2 \)[/tex]
This function can be broken down into:
[tex]\( x \)[/tex] which has a zero at [tex]\( x = 0 \)[/tex]
[tex]\( (x+7)^2 \)[/tex] which has a double zero at [tex]\( x = -7 \)[/tex]
Therefore, the distinct real zeros are [tex]\( x = 0 \)[/tex] and [tex]\( x = -7 \)[/tex]. So, there are 2 distinct real zeros.
### Function C: [tex]\( h(x) = (x-3)(x+1)(x+3)(x+8) \)[/tex]
Each factor will give exactly one zero:
[tex]\( (x-3) \)[/tex] which has a zero at [tex]\( x = 3 \)[/tex]
[tex]\( (x+1) \)[/tex] which has a zero at [tex]\( x = -1 \)[/tex]
[tex]\( (x+3) \)[/tex] which has a zero at [tex]\( x = 0 \)[/tex]
[tex]\( (x+8) \)[/tex] which has a zero at [tex]\( x = -8 \)[/tex]
Therefore, the distinct real zeros are [tex]\( x = 3 \)[/tex], [tex]\( x = -1 \)[/tex], [tex]\( x = 3 \)[/tex], and [tex]\( x = -8 \)[/tex]. So, there are 4 distinct real zeros.
### Function D: [tex]\( h(x) = (x-2)^2(x+4)(x-1) \)[/tex]
This function can be broken down into:
[tex]\( (x-2)^2 \)[/tex] which has a double zero at [tex]\( x = 2 \)[/tex]
[tex]\( (x+4) \)[/tex] which has a zero at [tex]\( x = -4 \)[/tex]
[tex]\( (x-1) \)[/tex] which has a zero at [tex]\( x = 1 \)[/tex]
Therefore, the distinct real zeros are [tex]\( x = 2 \)[/tex], [tex]\( x = -4 \)[/tex], and [tex]\( x = 1 \)[/tex]. So, there are 3 distinct real zeros.
Given these analyses, the function that has exactly three distinct real zeros is:
D. [tex]\(h(x) = (x-2)^2(x+4)(x-1) \)[/tex]
### Function A: [tex]\( h(x) = (x-9)^2 (x-4)^2 \)[/tex]
This is a product of two squared terms:
[tex]\( (x-9)^2 \)[/tex] which has a double zero at [tex]\( x = 9 \)[/tex]
[tex]\( (x-4)^2 \)[/tex] which has a double zero at [tex]\( x = 4 \)[/tex]
Therefore, the distinct real zeros are [tex]\( x = 9 \)[/tex] and [tex]\( x = 4 \)[/tex]. So, there are 2 distinct real zeros.
### Function B: [tex]\( h(x) = x(x+7)^2 \)[/tex]
This function can be broken down into:
[tex]\( x \)[/tex] which has a zero at [tex]\( x = 0 \)[/tex]
[tex]\( (x+7)^2 \)[/tex] which has a double zero at [tex]\( x = -7 \)[/tex]
Therefore, the distinct real zeros are [tex]\( x = 0 \)[/tex] and [tex]\( x = -7 \)[/tex]. So, there are 2 distinct real zeros.
### Function C: [tex]\( h(x) = (x-3)(x+1)(x+3)(x+8) \)[/tex]
Each factor will give exactly one zero:
[tex]\( (x-3) \)[/tex] which has a zero at [tex]\( x = 3 \)[/tex]
[tex]\( (x+1) \)[/tex] which has a zero at [tex]\( x = -1 \)[/tex]
[tex]\( (x+3) \)[/tex] which has a zero at [tex]\( x = 0 \)[/tex]
[tex]\( (x+8) \)[/tex] which has a zero at [tex]\( x = -8 \)[/tex]
Therefore, the distinct real zeros are [tex]\( x = 3 \)[/tex], [tex]\( x = -1 \)[/tex], [tex]\( x = 3 \)[/tex], and [tex]\( x = -8 \)[/tex]. So, there are 4 distinct real zeros.
### Function D: [tex]\( h(x) = (x-2)^2(x+4)(x-1) \)[/tex]
This function can be broken down into:
[tex]\( (x-2)^2 \)[/tex] which has a double zero at [tex]\( x = 2 \)[/tex]
[tex]\( (x+4) \)[/tex] which has a zero at [tex]\( x = -4 \)[/tex]
[tex]\( (x-1) \)[/tex] which has a zero at [tex]\( x = 1 \)[/tex]
Therefore, the distinct real zeros are [tex]\( x = 2 \)[/tex], [tex]\( x = -4 \)[/tex], and [tex]\( x = 1 \)[/tex]. So, there are 3 distinct real zeros.
Given these analyses, the function that has exactly three distinct real zeros is:
D. [tex]\(h(x) = (x-2)^2(x+4)(x-1) \)[/tex]
Your visit means a lot to us. Don't hesitate to return for more reliable answers to any questions you may have. We hope this was helpful. Please come back whenever you need more information or answers to your queries. Get the answers you need at Westonci.ca. Stay informed with our latest expert advice.