Get the answers you need at Westonci.ca, where our expert community is dedicated to providing you with accurate information. Get detailed answers to your questions from a community of experts dedicated to providing accurate information. Get quick and reliable solutions to your questions from a community of experienced experts on our platform.

Simplify:

[tex] \left(-6ba^3\right)^2 [/tex]

Write your answer without parentheses.


Sagot :

To simplify the expression [tex]\(\left( -6ba^3 \right)^2\)[/tex], we will follow these steps:

1. Square the Coefficient:
[tex]\[ (-6)^2 = 36 \][/tex]
Squaring [tex]\(-6\)[/tex] results in positive 36.

2. Square the Variables:
Each variable inside the parentheses is squared according to the exponentiation rule [tex]\((x^m)^n = x^{m \cdot n}\)[/tex].

- For [tex]\(b\)[/tex]:
[tex]\[ (b)^2 = b^2 \][/tex]

- For [tex]\(a^3\)[/tex]:
[tex]\[ (a^3)^2 = a^{3 \cdot 2} = a^6 \][/tex]

3. Combine Them:
We combine the squared coefficient and the squared variables into a single expression.
[tex]\[ 36 \cdot b^2 \cdot a^6 \][/tex]

Thus, the simplified form of the expression [tex]\(\left( -6ba^3 \right)^2\)[/tex] is:
[tex]\[ 36b^2a^6 \][/tex]
We hope our answers were helpful. Return anytime for more information and answers to any other questions you may have. Thanks for using our platform. We aim to provide accurate and up-to-date answers to all your queries. Come back soon. Stay curious and keep coming back to Westonci.ca for answers to all your burning questions.