Westonci.ca is the premier destination for reliable answers to your questions, provided by a community of experts. Join our platform to connect with experts ready to provide precise answers to your questions in different areas. Experience the ease of finding precise answers to your questions from a knowledgeable community of experts.

A 5.25 g sample of metal gives off 10.4 J of energy as it cools from [tex]$49.5^{\circ} C$[/tex] to [tex]$40.5^{\circ} C$[/tex]. What is the specific heat of the metal?

[tex]\[ c = \left[? \frac{J}{g \cdot^{\circ} C}\right] \][/tex]

Note: [tex]q = -10.4 J[/tex]


Sagot :

To find the specific heat of the metal, we can use the formula for heat transfer:

[tex]\[ q = mc\Delta T \][/tex]

where:
- [tex]\( q \)[/tex] is the heat energy transferred (in Joules),
- [tex]\( m \)[/tex] is the mass of the substance (in grams),
- [tex]\( c \)[/tex] is the specific heat capacity (in [tex]\( \frac{J}{g \cdot ^\circ C} \)[/tex]),
- [tex]\( \Delta T \)[/tex] is the change in temperature (in [tex]\( ^\circ C \)[/tex]).

Let's break down the problem step-by-step to find the specific heat capacity [tex]\( c \)[/tex]:

1. Identify the given values:
- The energy released: [tex]\( q = 10.4 \, \text{J} \)[/tex]
- The mass of the sample: [tex]\( m = 5.25 \, \text{g} \)[/tex]
- The initial temperature: [tex]\( T_{\text{initial}} = 49.5^\circ \text{C} \)[/tex]
- The final temperature: [tex]\( T_{\text{final}} = 40.5^\circ \text{C} \)[/tex]

2. Calculate the change in temperature [tex]\( \Delta T \)[/tex]:
[tex]\[ \Delta T = T_{\text{initial}} - T_{\text{final}} \][/tex]
[tex]\[ \Delta T = 49.5^\circ \text{C} - 40.5^\circ \text{C} = 9.0^\circ \text{C} \][/tex]

3. Rearrange the Heat Transfer Formula to solve for specific heat [tex]\( c \)[/tex]:
[tex]\[ c = \frac{q}{m \Delta T} \][/tex]

4. Substitute the known values into the equation:
[tex]\[ c = \frac{10.4 \, \text{J}}{5.25 \, \text{g} \cdot 9.0^\circ \text{C}} \][/tex]

5. Perform the calculation:
[tex]\[ c = \frac{10.4}{5.25 \times 9.0} \][/tex]
[tex]\[ c \approx \frac{10.4}{47.25} \approx 0.2201 \, \frac{J}{g \cdot ^\circ C} \][/tex]

Therefore, the specific heat capacity of the metal is approximately [tex]\( 0.2201 \frac{J}{g \cdot ^\circ C} \)[/tex].