At Westonci.ca, we make it easy to get the answers you need from a community of informed and experienced contributors. Discover the answers you need from a community of experts ready to help you with their knowledge and experience in various fields. Connect with a community of professionals ready to help you find accurate solutions to your questions quickly and efficiently.
Sagot :
To solve the problem, we need to find the zeros of the function [tex]\( h(x) = (x - 6)(x^2 + 8x + 16) \)[/tex] and determine their nature.
1. Factor the quadratic expression [tex]\( x^2 + 8x + 16 \)[/tex]:
The quadratic expression can be factored as follows:
[tex]\[ x^2 + 8x + 16 = (x + 4)^2 \][/tex]
Therefore, the function [tex]\( h(x) \)[/tex] can be rewritten as:
[tex]\[ h(x) = (x - 6)(x + 4)^2 \][/tex]
2. Find the zeros of [tex]\( h(x) \)[/tex]:
The zeros of the function occur when each factor is equal to zero.
[tex]\[ x - 6 = 0 \quad \Rightarrow \quad x = 6 \][/tex]
[tex]\[ (x + 4)^2 = 0 \quad \Rightarrow \quad x + 4 = 0 \quad \Rightarrow \quad x = -4 \][/tex]
Here, [tex]\( x = -4 \)[/tex] is a repeated zero (it has multiplicity 2).
3. Determine the nature and distinctness of the zeros:
The zeros of [tex]\( h(x) \)[/tex] are:
[tex]\[ x = 6 \quad \text{and} \quad x = -4 \, (repeated) \][/tex]
So, the zeros are [tex]\( x = 6 \)[/tex] and [tex]\( x = -4 \)[/tex]. Even though [tex]\( x = -4 \)[/tex] is repeated, it is still considered as one distinct zero. Hence, there are two distinct real zeros: [tex]\( x = 6 \)[/tex] and [tex]\( x = -4 \)[/tex].
4. Select the correct statement:
The function [tex]\( h(x) \)[/tex] has exactly two distinct real zeros: [tex]\( x = 6 \)[/tex] and [tex]\( x = -4 \)[/tex] (with multiplicity 2).
The correct answer is:
A. The function has two distinct real zeros.
1. Factor the quadratic expression [tex]\( x^2 + 8x + 16 \)[/tex]:
The quadratic expression can be factored as follows:
[tex]\[ x^2 + 8x + 16 = (x + 4)^2 \][/tex]
Therefore, the function [tex]\( h(x) \)[/tex] can be rewritten as:
[tex]\[ h(x) = (x - 6)(x + 4)^2 \][/tex]
2. Find the zeros of [tex]\( h(x) \)[/tex]:
The zeros of the function occur when each factor is equal to zero.
[tex]\[ x - 6 = 0 \quad \Rightarrow \quad x = 6 \][/tex]
[tex]\[ (x + 4)^2 = 0 \quad \Rightarrow \quad x + 4 = 0 \quad \Rightarrow \quad x = -4 \][/tex]
Here, [tex]\( x = -4 \)[/tex] is a repeated zero (it has multiplicity 2).
3. Determine the nature and distinctness of the zeros:
The zeros of [tex]\( h(x) \)[/tex] are:
[tex]\[ x = 6 \quad \text{and} \quad x = -4 \, (repeated) \][/tex]
So, the zeros are [tex]\( x = 6 \)[/tex] and [tex]\( x = -4 \)[/tex]. Even though [tex]\( x = -4 \)[/tex] is repeated, it is still considered as one distinct zero. Hence, there are two distinct real zeros: [tex]\( x = 6 \)[/tex] and [tex]\( x = -4 \)[/tex].
4. Select the correct statement:
The function [tex]\( h(x) \)[/tex] has exactly two distinct real zeros: [tex]\( x = 6 \)[/tex] and [tex]\( x = -4 \)[/tex] (with multiplicity 2).
The correct answer is:
A. The function has two distinct real zeros.
Thanks for using our service. We aim to provide the most accurate answers for all your queries. Visit us again for more insights. We hope you found this helpful. Feel free to come back anytime for more accurate answers and updated information. Thank you for choosing Westonci.ca as your information source. We look forward to your next visit.