Westonci.ca makes finding answers easy, with a community of experts ready to provide you with the information you seek. Explore comprehensive solutions to your questions from a wide range of professionals on our user-friendly platform. Experience the ease of finding precise answers to your questions from a knowledgeable community of experts.
Sagot :
To solve the problem, we need to find the zeros of the function [tex]\( h(x) = (x - 6)(x^2 + 8x + 16) \)[/tex] and determine their nature.
1. Factor the quadratic expression [tex]\( x^2 + 8x + 16 \)[/tex]:
The quadratic expression can be factored as follows:
[tex]\[ x^2 + 8x + 16 = (x + 4)^2 \][/tex]
Therefore, the function [tex]\( h(x) \)[/tex] can be rewritten as:
[tex]\[ h(x) = (x - 6)(x + 4)^2 \][/tex]
2. Find the zeros of [tex]\( h(x) \)[/tex]:
The zeros of the function occur when each factor is equal to zero.
[tex]\[ x - 6 = 0 \quad \Rightarrow \quad x = 6 \][/tex]
[tex]\[ (x + 4)^2 = 0 \quad \Rightarrow \quad x + 4 = 0 \quad \Rightarrow \quad x = -4 \][/tex]
Here, [tex]\( x = -4 \)[/tex] is a repeated zero (it has multiplicity 2).
3. Determine the nature and distinctness of the zeros:
The zeros of [tex]\( h(x) \)[/tex] are:
[tex]\[ x = 6 \quad \text{and} \quad x = -4 \, (repeated) \][/tex]
So, the zeros are [tex]\( x = 6 \)[/tex] and [tex]\( x = -4 \)[/tex]. Even though [tex]\( x = -4 \)[/tex] is repeated, it is still considered as one distinct zero. Hence, there are two distinct real zeros: [tex]\( x = 6 \)[/tex] and [tex]\( x = -4 \)[/tex].
4. Select the correct statement:
The function [tex]\( h(x) \)[/tex] has exactly two distinct real zeros: [tex]\( x = 6 \)[/tex] and [tex]\( x = -4 \)[/tex] (with multiplicity 2).
The correct answer is:
A. The function has two distinct real zeros.
1. Factor the quadratic expression [tex]\( x^2 + 8x + 16 \)[/tex]:
The quadratic expression can be factored as follows:
[tex]\[ x^2 + 8x + 16 = (x + 4)^2 \][/tex]
Therefore, the function [tex]\( h(x) \)[/tex] can be rewritten as:
[tex]\[ h(x) = (x - 6)(x + 4)^2 \][/tex]
2. Find the zeros of [tex]\( h(x) \)[/tex]:
The zeros of the function occur when each factor is equal to zero.
[tex]\[ x - 6 = 0 \quad \Rightarrow \quad x = 6 \][/tex]
[tex]\[ (x + 4)^2 = 0 \quad \Rightarrow \quad x + 4 = 0 \quad \Rightarrow \quad x = -4 \][/tex]
Here, [tex]\( x = -4 \)[/tex] is a repeated zero (it has multiplicity 2).
3. Determine the nature and distinctness of the zeros:
The zeros of [tex]\( h(x) \)[/tex] are:
[tex]\[ x = 6 \quad \text{and} \quad x = -4 \, (repeated) \][/tex]
So, the zeros are [tex]\( x = 6 \)[/tex] and [tex]\( x = -4 \)[/tex]. Even though [tex]\( x = -4 \)[/tex] is repeated, it is still considered as one distinct zero. Hence, there are two distinct real zeros: [tex]\( x = 6 \)[/tex] and [tex]\( x = -4 \)[/tex].
4. Select the correct statement:
The function [tex]\( h(x) \)[/tex] has exactly two distinct real zeros: [tex]\( x = 6 \)[/tex] and [tex]\( x = -4 \)[/tex] (with multiplicity 2).
The correct answer is:
A. The function has two distinct real zeros.
We hope this information was helpful. Feel free to return anytime for more answers to your questions and concerns. Thanks for stopping by. We strive to provide the best answers for all your questions. See you again soon. Find reliable answers at Westonci.ca. Visit us again for the latest updates and expert advice.