Westonci.ca makes finding answers easy, with a community of experts ready to provide you with the information you seek. Get precise and detailed answers to your questions from a knowledgeable community of experts on our Q&A platform. Experience the convenience of finding accurate answers to your questions from knowledgeable experts on our platform.
Sagot :
### Solution:
#### Part 10.1: Expressing the Area of Rectangle PQRS
To express the area of the rectangle PQRS:
1. Let the coordinates of point [tex]\( P \)[/tex] be [tex]\( (x, h(x)) \)[/tex], where [tex]\( h(x) \)[/tex] is given by the function [tex]\( h(x) = x^2 \)[/tex].
2. Given that the x-axis and the line [tex]\( x = 6 \)[/tex] are boundaries, the other corner [tex]\( Q \)[/tex] of the rectangle on the x-axis will be [tex]\( (x, 0) \)[/tex], and the width of the rectangle is from [tex]\( x = 6 \)[/tex] to [tex]\( x \)[/tex].
Thus, the width of the rectangle [tex]\( w \)[/tex] is:
[tex]\[ w = 6 - x \][/tex]
The height of the rectangle [tex]\( h \)[/tex] at point [tex]\( P \)[/tex] is:
[tex]\[ h = h(x) = x^2 \][/tex]
Thus, the area [tex]\( A \)[/tex] of the rectangle PQRS is given by:
[tex]\[ A = \text{width} \times \text{height} \][/tex]
[tex]\[ A = (6 - x) \times x^2 \][/tex]
[tex]\[ A = 6x^2 - x^3 \][/tex]
Therefore, we have expressed the area [tex]\( A \)[/tex] as:
[tex]\[ A = 6x^2 - x^3 \][/tex]
#### Part 10.2: Determining the Largest Possible Area
Next, to find the largest possible area for the rectangle PQRS, we need to maximize the area function [tex]\( A = 6x^2 - x^3 \)[/tex].
1. First Derivative:
To find the critical points, we first take the derivative of [tex]\( A \)[/tex] with respect to [tex]\( x \)[/tex]:
[tex]\[ \frac{dA}{dx} = \frac{d}{dx}(6x^2 - x^3) \][/tex]
[tex]\[ \frac{dA}{dx} = 12x - 3x^2 \][/tex]
2. Setting the derivative to zero:
We set the first derivative to zero to find the critical points:
[tex]\[ 12x - 3x^2 = 0 \][/tex]
[tex]\[ 3x(4 - x) = 0 \][/tex]
Solving for [tex]\( x \)[/tex]:
[tex]\[ x = 0 \quad \text{or} \quad x = 4 \][/tex]
3. Second Derivative:
To confirm which critical point gives the maximum area, we take the second derivative of [tex]\( A \)[/tex]:
[tex]\[ \frac{d^2A}{dx^2} = \frac{d}{dx}(12x - 3x^2) \][/tex]
[tex]\[ \frac{d^2A}{dx^2} = 12 - 6x \][/tex]
4. Evaluating the second derivative at the critical points:
- At [tex]\( x = 0 \)[/tex]:
[tex]\[ \frac{d^2A}{dx^2} \Bigg|_{x=0} = 12 - 6(0) = 12 \][/tex]
Since [tex]\( \frac{d^2A}{dx^2} > 0 \)[/tex], [tex]\( x = 0 \)[/tex] is a local minimum.
- At [tex]\( x = 4 \)[/tex]:
[tex]\[ \frac{d^2A}{dx^2} \Bigg|_{x=4} = 12 - 6(4) = 12 - 24 = -12 \][/tex]
Since [tex]\( \frac{d^2A}{dx^2} < 0 \)[/tex], [tex]\( x = 4 \)[/tex] is a local maximum.
Therefore, the maximum area is achieved at [tex]\( x = 4 \)[/tex].
5. Calculating the maximum area:
Substituting [tex]\( x = 4 \)[/tex] into the area function:
[tex]\[ A = 6x^2 - x^3 \][/tex]
[tex]\[ A = 6(4)^2 - (4)^3 \][/tex]
[tex]\[ A = 6(16) - 64 \][/tex]
[tex]\[ A = 96 - 64 \][/tex]
[tex]\[ A = 32 \][/tex]
The largest possible area for the rectangle PQRS is:
[tex]\[ \boxed{32} \][/tex]
#### Part 10.1: Expressing the Area of Rectangle PQRS
To express the area of the rectangle PQRS:
1. Let the coordinates of point [tex]\( P \)[/tex] be [tex]\( (x, h(x)) \)[/tex], where [tex]\( h(x) \)[/tex] is given by the function [tex]\( h(x) = x^2 \)[/tex].
2. Given that the x-axis and the line [tex]\( x = 6 \)[/tex] are boundaries, the other corner [tex]\( Q \)[/tex] of the rectangle on the x-axis will be [tex]\( (x, 0) \)[/tex], and the width of the rectangle is from [tex]\( x = 6 \)[/tex] to [tex]\( x \)[/tex].
Thus, the width of the rectangle [tex]\( w \)[/tex] is:
[tex]\[ w = 6 - x \][/tex]
The height of the rectangle [tex]\( h \)[/tex] at point [tex]\( P \)[/tex] is:
[tex]\[ h = h(x) = x^2 \][/tex]
Thus, the area [tex]\( A \)[/tex] of the rectangle PQRS is given by:
[tex]\[ A = \text{width} \times \text{height} \][/tex]
[tex]\[ A = (6 - x) \times x^2 \][/tex]
[tex]\[ A = 6x^2 - x^3 \][/tex]
Therefore, we have expressed the area [tex]\( A \)[/tex] as:
[tex]\[ A = 6x^2 - x^3 \][/tex]
#### Part 10.2: Determining the Largest Possible Area
Next, to find the largest possible area for the rectangle PQRS, we need to maximize the area function [tex]\( A = 6x^2 - x^3 \)[/tex].
1. First Derivative:
To find the critical points, we first take the derivative of [tex]\( A \)[/tex] with respect to [tex]\( x \)[/tex]:
[tex]\[ \frac{dA}{dx} = \frac{d}{dx}(6x^2 - x^3) \][/tex]
[tex]\[ \frac{dA}{dx} = 12x - 3x^2 \][/tex]
2. Setting the derivative to zero:
We set the first derivative to zero to find the critical points:
[tex]\[ 12x - 3x^2 = 0 \][/tex]
[tex]\[ 3x(4 - x) = 0 \][/tex]
Solving for [tex]\( x \)[/tex]:
[tex]\[ x = 0 \quad \text{or} \quad x = 4 \][/tex]
3. Second Derivative:
To confirm which critical point gives the maximum area, we take the second derivative of [tex]\( A \)[/tex]:
[tex]\[ \frac{d^2A}{dx^2} = \frac{d}{dx}(12x - 3x^2) \][/tex]
[tex]\[ \frac{d^2A}{dx^2} = 12 - 6x \][/tex]
4. Evaluating the second derivative at the critical points:
- At [tex]\( x = 0 \)[/tex]:
[tex]\[ \frac{d^2A}{dx^2} \Bigg|_{x=0} = 12 - 6(0) = 12 \][/tex]
Since [tex]\( \frac{d^2A}{dx^2} > 0 \)[/tex], [tex]\( x = 0 \)[/tex] is a local minimum.
- At [tex]\( x = 4 \)[/tex]:
[tex]\[ \frac{d^2A}{dx^2} \Bigg|_{x=4} = 12 - 6(4) = 12 - 24 = -12 \][/tex]
Since [tex]\( \frac{d^2A}{dx^2} < 0 \)[/tex], [tex]\( x = 4 \)[/tex] is a local maximum.
Therefore, the maximum area is achieved at [tex]\( x = 4 \)[/tex].
5. Calculating the maximum area:
Substituting [tex]\( x = 4 \)[/tex] into the area function:
[tex]\[ A = 6x^2 - x^3 \][/tex]
[tex]\[ A = 6(4)^2 - (4)^3 \][/tex]
[tex]\[ A = 6(16) - 64 \][/tex]
[tex]\[ A = 96 - 64 \][/tex]
[tex]\[ A = 32 \][/tex]
The largest possible area for the rectangle PQRS is:
[tex]\[ \boxed{32} \][/tex]
Your visit means a lot to us. Don't hesitate to return for more reliable answers to any questions you may have. Thank you for visiting. Our goal is to provide the most accurate answers for all your informational needs. Come back soon. We're here to help at Westonci.ca. Keep visiting for the best answers to your questions.