Welcome to Westonci.ca, your go-to destination for finding answers to all your questions. Join our expert community today! Explore our Q&A platform to find in-depth answers from a wide range of experts in different fields. Our platform offers a seamless experience for finding reliable answers from a network of knowledgeable professionals.
Sagot :
To understand which property justifies the statement "If [tex]\(a = b\)[/tex] and [tex]\(b = c\)[/tex], then [tex]\(a = c\)[/tex]," we need to consider the different properties of equality in mathematics.
1. Addition Property: This property states that if [tex]\(a = b\)[/tex], then [tex]\(a + c = b + c\)[/tex] for any [tex]\(c\)[/tex]. This property is related to the addition of equal quantities.
2. Reflexive Property: This property states that any quantity is equal to itself, i.e., [tex]\(a = a\)[/tex]. It is fundamental but does not involve multiple quantities or the chaining of equalities.
3. Subtraction Property: This property states that if [tex]\(a = b\)[/tex], then [tex]\(a - c = b - c\)[/tex] for any [tex]\(c\)[/tex]. This property is similar to the addition property but involves subtraction.
4. Transitive Property: This property states that if [tex]\(a = b\)[/tex] and [tex]\(b = c\)[/tex], then [tex]\(a = c\)[/tex]. It involves three quantities and shows how the equality can be transferred across them.
The given statement "If [tex]\(a = b\)[/tex] and [tex]\(b = c\)[/tex], then [tex]\(a = c\)[/tex]" is directly described by the Transitive Property. This property allows us to conclude that two things are equal if they are both equal to a third thing.
Given the options, the property that would justify the statement is:
- Transitive Property
Therefore, the correct answer is the 4th option: Transitive Property.
1. Addition Property: This property states that if [tex]\(a = b\)[/tex], then [tex]\(a + c = b + c\)[/tex] for any [tex]\(c\)[/tex]. This property is related to the addition of equal quantities.
2. Reflexive Property: This property states that any quantity is equal to itself, i.e., [tex]\(a = a\)[/tex]. It is fundamental but does not involve multiple quantities or the chaining of equalities.
3. Subtraction Property: This property states that if [tex]\(a = b\)[/tex], then [tex]\(a - c = b - c\)[/tex] for any [tex]\(c\)[/tex]. This property is similar to the addition property but involves subtraction.
4. Transitive Property: This property states that if [tex]\(a = b\)[/tex] and [tex]\(b = c\)[/tex], then [tex]\(a = c\)[/tex]. It involves three quantities and shows how the equality can be transferred across them.
The given statement "If [tex]\(a = b\)[/tex] and [tex]\(b = c\)[/tex], then [tex]\(a = c\)[/tex]" is directly described by the Transitive Property. This property allows us to conclude that two things are equal if they are both equal to a third thing.
Given the options, the property that would justify the statement is:
- Transitive Property
Therefore, the correct answer is the 4th option: Transitive Property.
Thanks for using our service. We're always here to provide accurate and up-to-date answers to all your queries. Thank you for your visit. We're committed to providing you with the best information available. Return anytime for more. Your questions are important to us at Westonci.ca. Visit again for expert answers and reliable information.