Welcome to Westonci.ca, where curiosity meets expertise. Ask any question and receive fast, accurate answers from our knowledgeable community. Experience the ease of finding reliable answers to your questions from a vast community of knowledgeable experts. Experience the convenience of finding accurate answers to your questions from knowledgeable experts on our platform.
Sagot :
To understand which property justifies the statement "If [tex]\(a = b\)[/tex] and [tex]\(b = c\)[/tex], then [tex]\(a = c\)[/tex]," we need to consider the different properties of equality in mathematics.
1. Addition Property: This property states that if [tex]\(a = b\)[/tex], then [tex]\(a + c = b + c\)[/tex] for any [tex]\(c\)[/tex]. This property is related to the addition of equal quantities.
2. Reflexive Property: This property states that any quantity is equal to itself, i.e., [tex]\(a = a\)[/tex]. It is fundamental but does not involve multiple quantities or the chaining of equalities.
3. Subtraction Property: This property states that if [tex]\(a = b\)[/tex], then [tex]\(a - c = b - c\)[/tex] for any [tex]\(c\)[/tex]. This property is similar to the addition property but involves subtraction.
4. Transitive Property: This property states that if [tex]\(a = b\)[/tex] and [tex]\(b = c\)[/tex], then [tex]\(a = c\)[/tex]. It involves three quantities and shows how the equality can be transferred across them.
The given statement "If [tex]\(a = b\)[/tex] and [tex]\(b = c\)[/tex], then [tex]\(a = c\)[/tex]" is directly described by the Transitive Property. This property allows us to conclude that two things are equal if they are both equal to a third thing.
Given the options, the property that would justify the statement is:
- Transitive Property
Therefore, the correct answer is the 4th option: Transitive Property.
1. Addition Property: This property states that if [tex]\(a = b\)[/tex], then [tex]\(a + c = b + c\)[/tex] for any [tex]\(c\)[/tex]. This property is related to the addition of equal quantities.
2. Reflexive Property: This property states that any quantity is equal to itself, i.e., [tex]\(a = a\)[/tex]. It is fundamental but does not involve multiple quantities or the chaining of equalities.
3. Subtraction Property: This property states that if [tex]\(a = b\)[/tex], then [tex]\(a - c = b - c\)[/tex] for any [tex]\(c\)[/tex]. This property is similar to the addition property but involves subtraction.
4. Transitive Property: This property states that if [tex]\(a = b\)[/tex] and [tex]\(b = c\)[/tex], then [tex]\(a = c\)[/tex]. It involves three quantities and shows how the equality can be transferred across them.
The given statement "If [tex]\(a = b\)[/tex] and [tex]\(b = c\)[/tex], then [tex]\(a = c\)[/tex]" is directly described by the Transitive Property. This property allows us to conclude that two things are equal if they are both equal to a third thing.
Given the options, the property that would justify the statement is:
- Transitive Property
Therefore, the correct answer is the 4th option: Transitive Property.
Thanks for using our platform. We're always here to provide accurate and up-to-date answers to all your queries. We appreciate your time. Please revisit us for more reliable answers to any questions you may have. Thank you for visiting Westonci.ca. Stay informed by coming back for more detailed answers.