Westonci.ca offers fast, accurate answers to your questions. Join our community and get the insights you need now. Our Q&A platform offers a seamless experience for finding reliable answers from experts in various disciplines. Get precise and detailed answers to your questions from a knowledgeable community of experts on our Q&A platform.
Sagot :
To determine the solution to the inequality [tex]\( 15 - 5x < -10 \)[/tex], follow these steps:
1. Isolate the variable term: First, we need to move the constant term on the left-hand side of the inequality over to the right-hand side. We do this by subtracting 15 from both sides.
[tex]\[ 15 - 5x - 15 < -10 - 15 \][/tex]
Simplifying this, we get:
[tex]\[ -5x < -25 \][/tex]
2. Solve for [tex]\( x \)[/tex]: To isolate [tex]\( x \)[/tex], we need to divide both sides of the inequality by [tex]\(-5\)[/tex]. Remember that dividing or multiplying both sides of an inequality by a negative number reverses the inequality sign.
[tex]\[ \frac{-5x}{-5} > \frac{-25}{-5} \][/tex]
Simplifying this, we get:
[tex]\[ x > 5 \][/tex]
3. Interpret the solution: The inequality [tex]\( x > 5 \)[/tex] means that [tex]\( x \)[/tex] can be any number greater than 5.
4. Represent the solution on the number line: To represent [tex]\( x > 5 \)[/tex] on a number line:
- Draw a number line with numbers marked on it.
- Place an open circle (not filled in) at 5 to indicate that 5 is not included in the solution.
- Shade the number line to the right of 5 to indicate all numbers greater than 5 are included in the solution.
The number line representation of the solution [tex]\( x > 5 \)[/tex] looks like this:
- A number line with points labeled.
- An open circle at 5.
- Shading or an arrow extending to the right (positive side) beyond the 5.
In summary, the solution to the inequality [tex]\( 15 - 5x < -10 \)[/tex] is all values of [tex]\( x \)[/tex] greater than 5, and this is represented on the number line with an open circle at 5 and shading to the right.
1. Isolate the variable term: First, we need to move the constant term on the left-hand side of the inequality over to the right-hand side. We do this by subtracting 15 from both sides.
[tex]\[ 15 - 5x - 15 < -10 - 15 \][/tex]
Simplifying this, we get:
[tex]\[ -5x < -25 \][/tex]
2. Solve for [tex]\( x \)[/tex]: To isolate [tex]\( x \)[/tex], we need to divide both sides of the inequality by [tex]\(-5\)[/tex]. Remember that dividing or multiplying both sides of an inequality by a negative number reverses the inequality sign.
[tex]\[ \frac{-5x}{-5} > \frac{-25}{-5} \][/tex]
Simplifying this, we get:
[tex]\[ x > 5 \][/tex]
3. Interpret the solution: The inequality [tex]\( x > 5 \)[/tex] means that [tex]\( x \)[/tex] can be any number greater than 5.
4. Represent the solution on the number line: To represent [tex]\( x > 5 \)[/tex] on a number line:
- Draw a number line with numbers marked on it.
- Place an open circle (not filled in) at 5 to indicate that 5 is not included in the solution.
- Shade the number line to the right of 5 to indicate all numbers greater than 5 are included in the solution.
The number line representation of the solution [tex]\( x > 5 \)[/tex] looks like this:
- A number line with points labeled.
- An open circle at 5.
- Shading or an arrow extending to the right (positive side) beyond the 5.
In summary, the solution to the inequality [tex]\( 15 - 5x < -10 \)[/tex] is all values of [tex]\( x \)[/tex] greater than 5, and this is represented on the number line with an open circle at 5 and shading to the right.
Thank you for trusting us with your questions. We're here to help you find accurate answers quickly and efficiently. We hope you found what you were looking for. Feel free to revisit us for more answers and updated information. Thank you for visiting Westonci.ca, your go-to source for reliable answers. Come back soon for more expert insights.