Westonci.ca makes finding answers easy, with a community of experts ready to provide you with the information you seek. Discover the answers you need from a community of experts ready to help you with their knowledge and experience in various fields. Join our Q&A platform to connect with experts dedicated to providing accurate answers to your questions in various fields.
Sagot :
Let's break down the steps to fill in the missing Step 2 and understand the solution for the quadratic equation:
1. Starting with the Given Equation:
[tex]\[ 2(x-3)^2 + 6 = 14 \][/tex]
2. Isolate the Squared Term:
To isolate the squared term, we first need to move the constant on the left-hand side to the right-hand side by subtracting 6 from both sides:
[tex]\[ 2(x-3)^2 + 6 - 6 = 14 - 6 \][/tex]
This simplifies to:
[tex]\[ 2(x-3)^2 = 8 \][/tex]
This is Step 1.
3. Divide Both Sides by 2:
Next, to isolate [tex]\((x-3)^2\)[/tex], we divide both sides of the equation by 2:
[tex]\[ \frac{2(x-3)^2}{2} = \frac{8}{2} \][/tex]
Simplifying this gives:
[tex]\[ (x-3)^2 = 4 \][/tex]
This would be Step 2.
4. Take the Square Root of Both Sides:
To solve for [tex]\(x-3\)[/tex], we need to take the square root of both sides. Remember that taking the square root of a number will give two results: a positive and a negative root:
[tex]\[ x - 3 = \pm 2 \][/tex]
This simplifies to two equations:
[tex]\[ x - 3 = 2 \quad \text{or} \quad x - 3 = -2 \][/tex]
This is Step 3.
5. Solve for [tex]\(x\)[/tex]:
Now, solve each equation separately:
[tex]\[ x - 3 = 2 \implies x = 2 + 3 \implies x = 5 \][/tex]
[tex]\[ x - 3 = -2 \implies x = -2 + 3 \implies x = 1 \][/tex]
Therefore, the solutions are:
[tex]\[ x = 1 \quad \text{or} \quad x = 5 \][/tex]
This is Step 4.
So, summarizing the steps, Tara's work would look like:
[tex]\[ \begin{array}{ll} 2(x-3)^2+6=14 & \\ 2(x-3)^2=8 & \text {Step 1} \\ (x-3)^2=4 & \text {Step 2} \\ x-3= \pm 2 & \text {Step 3} \\ x=1 \text { or } x=5 & \text {Step 4} \end{array} \][/tex]
Therefore, the missing Step 2 should be:
[tex]\[ (x-3)^2 = 4 \][/tex]
1. Starting with the Given Equation:
[tex]\[ 2(x-3)^2 + 6 = 14 \][/tex]
2. Isolate the Squared Term:
To isolate the squared term, we first need to move the constant on the left-hand side to the right-hand side by subtracting 6 from both sides:
[tex]\[ 2(x-3)^2 + 6 - 6 = 14 - 6 \][/tex]
This simplifies to:
[tex]\[ 2(x-3)^2 = 8 \][/tex]
This is Step 1.
3. Divide Both Sides by 2:
Next, to isolate [tex]\((x-3)^2\)[/tex], we divide both sides of the equation by 2:
[tex]\[ \frac{2(x-3)^2}{2} = \frac{8}{2} \][/tex]
Simplifying this gives:
[tex]\[ (x-3)^2 = 4 \][/tex]
This would be Step 2.
4. Take the Square Root of Both Sides:
To solve for [tex]\(x-3\)[/tex], we need to take the square root of both sides. Remember that taking the square root of a number will give two results: a positive and a negative root:
[tex]\[ x - 3 = \pm 2 \][/tex]
This simplifies to two equations:
[tex]\[ x - 3 = 2 \quad \text{or} \quad x - 3 = -2 \][/tex]
This is Step 3.
5. Solve for [tex]\(x\)[/tex]:
Now, solve each equation separately:
[tex]\[ x - 3 = 2 \implies x = 2 + 3 \implies x = 5 \][/tex]
[tex]\[ x - 3 = -2 \implies x = -2 + 3 \implies x = 1 \][/tex]
Therefore, the solutions are:
[tex]\[ x = 1 \quad \text{or} \quad x = 5 \][/tex]
This is Step 4.
So, summarizing the steps, Tara's work would look like:
[tex]\[ \begin{array}{ll} 2(x-3)^2+6=14 & \\ 2(x-3)^2=8 & \text {Step 1} \\ (x-3)^2=4 & \text {Step 2} \\ x-3= \pm 2 & \text {Step 3} \\ x=1 \text { or } x=5 & \text {Step 4} \end{array} \][/tex]
Therefore, the missing Step 2 should be:
[tex]\[ (x-3)^2 = 4 \][/tex]
Thank you for choosing our service. We're dedicated to providing the best answers for all your questions. Visit us again. Thank you for visiting. Our goal is to provide the most accurate answers for all your informational needs. Come back soon. We're dedicated to helping you find the answers you need at Westonci.ca. Don't hesitate to return for more.