Discover the best answers at Westonci.ca, where experts share their insights and knowledge with you. Experience the ease of finding accurate answers to your questions from a knowledgeable community of professionals. Get precise and detailed answers to your questions from a knowledgeable community of experts on our Q&A platform.
Sagot :
To simplify the given expression, [tex]\(\frac{-9 m n^2}{3 m^4 n}\)[/tex], we will follow a systematic process. Let’s break it down step-by-step:
1. Separate the Constants and Variables:
The numerator is [tex]\(-9 m n^2\)[/tex], and the denominator is [tex]\(3 m^4 n\)[/tex].
First, divide the constants:
[tex]\[ \frac{-9}{3} = -3 \][/tex]
Now, the expression becomes:
[tex]\[ -3 \cdot \frac{m n^2}{m^4 n} \][/tex]
2. Simplify the [tex]\(m\)[/tex] Terms:
In the fraction [tex]\(\frac{m n^2}{m^4 n}\)[/tex], the [tex]\(m\)[/tex] terms are [tex]\(m\)[/tex] in the numerator and [tex]\(m^4\)[/tex] in the denominator. Simplify by subtracting the powers (using [tex]\(\frac{m^a}{m^b} = m^{a-b}\)[/tex]):
[tex]\[ \frac{m}{m^4} = m^{1-4} = m^{-3} \][/tex]
3. Simplify the [tex]\(n\)[/tex] Terms:
Similarly, for the [tex]\(n\)[/tex] terms, we have [tex]\(n^2\)[/tex] in the numerator and [tex]\(n\)[/tex] in the denominator:
[tex]\[ \frac{n^2}{n} = n^{2-1} = n \][/tex]
4. Combine the Simplified Parts:
Now, combine the simplified [tex]\(m\)[/tex] and [tex]\(n\)[/tex] terms with the constant:
[tex]\[ -3 \cdot m^{-3} \cdot n \][/tex]
So, the simplified form of the expression [tex]\(\frac{-9 m n^2}{3 m^4 n}\)[/tex] is:
[tex]\[ -3 \cdot n \cdot m^{-3} \quad \text{or} \quad \frac{-3n}{m^3} \][/tex]
Among the given options, this matches with:
[tex]\[ -3 \frac{n}{m^3} \][/tex]
Thus, the correct simplified form is [tex]\(\frac{n}{m^3}\)[/tex]. However, it seems there’s a mismatch with the final format you may want to align it with exactly these. Thus, the choice matching the simplification correctly is [tex]\(\boxed{-3 \frac{n}{m^3}}\)[/tex].
1. Separate the Constants and Variables:
The numerator is [tex]\(-9 m n^2\)[/tex], and the denominator is [tex]\(3 m^4 n\)[/tex].
First, divide the constants:
[tex]\[ \frac{-9}{3} = -3 \][/tex]
Now, the expression becomes:
[tex]\[ -3 \cdot \frac{m n^2}{m^4 n} \][/tex]
2. Simplify the [tex]\(m\)[/tex] Terms:
In the fraction [tex]\(\frac{m n^2}{m^4 n}\)[/tex], the [tex]\(m\)[/tex] terms are [tex]\(m\)[/tex] in the numerator and [tex]\(m^4\)[/tex] in the denominator. Simplify by subtracting the powers (using [tex]\(\frac{m^a}{m^b} = m^{a-b}\)[/tex]):
[tex]\[ \frac{m}{m^4} = m^{1-4} = m^{-3} \][/tex]
3. Simplify the [tex]\(n\)[/tex] Terms:
Similarly, for the [tex]\(n\)[/tex] terms, we have [tex]\(n^2\)[/tex] in the numerator and [tex]\(n\)[/tex] in the denominator:
[tex]\[ \frac{n^2}{n} = n^{2-1} = n \][/tex]
4. Combine the Simplified Parts:
Now, combine the simplified [tex]\(m\)[/tex] and [tex]\(n\)[/tex] terms with the constant:
[tex]\[ -3 \cdot m^{-3} \cdot n \][/tex]
So, the simplified form of the expression [tex]\(\frac{-9 m n^2}{3 m^4 n}\)[/tex] is:
[tex]\[ -3 \cdot n \cdot m^{-3} \quad \text{or} \quad \frac{-3n}{m^3} \][/tex]
Among the given options, this matches with:
[tex]\[ -3 \frac{n}{m^3} \][/tex]
Thus, the correct simplified form is [tex]\(\frac{n}{m^3}\)[/tex]. However, it seems there’s a mismatch with the final format you may want to align it with exactly these. Thus, the choice matching the simplification correctly is [tex]\(\boxed{-3 \frac{n}{m^3}}\)[/tex].
Thank you for trusting us with your questions. We're here to help you find accurate answers quickly and efficiently. Thank you for your visit. We're dedicated to helping you find the information you need, whenever you need it. Thank you for visiting Westonci.ca, your go-to source for reliable answers. Come back soon for more expert insights.