Westonci.ca makes finding answers easy, with a community of experts ready to provide you with the information you seek. Experience the convenience of finding accurate answers to your questions from knowledgeable professionals on our platform. Join our platform to connect with experts ready to provide precise answers to your questions in different areas.
Sagot :
To solve the expression [tex]\(\frac{\sqrt{25a}}{\sqrt{-25a}}\)[/tex], let's break it down into simpler steps:
1. Simplify the numerator:
The expression in the numerator is [tex]\(\sqrt{25a}\)[/tex].
We can simplify this as:
[tex]\[ \sqrt{25a} = \sqrt{25} \cdot \sqrt{a} \][/tex]
Since [tex]\(\sqrt{25} = 5\)[/tex], the simplified numerator is:
[tex]\[ 5\sqrt{a} \][/tex]
2. Simplify the denominator:
The expression in the denominator is [tex]\(\sqrt{-25a}\)[/tex].
We can simplify this as:
[tex]\[ \sqrt{-25a} = \sqrt{-1 \cdot 25a} = \sqrt{25a} \cdot \sqrt{-1} \][/tex]
Again, [tex]\(\sqrt{25} = 5\)[/tex], and [tex]\(\sqrt{-1} = i\)[/tex] (where [tex]\(i\)[/tex] is the imaginary unit). Therefore, the simplified denominator is:
[tex]\[ 5i\sqrt{a} \][/tex]
3. Combine the simplified numerator and denominator:
Now we have:
[tex]\[ \frac{\sqrt{25a}}{\sqrt{-25a}} = \frac{5\sqrt{a}}{5i\sqrt{a}} \][/tex]
Notice that [tex]\(5\sqrt{a}\)[/tex] in the numerator and denominator cancels out, so we are left with:
[tex]\[ \frac{5\sqrt{a}}{5i\sqrt{a}} = \frac{1}{i} \][/tex]
4. Simplify [tex]\(\frac{1}{i}\)[/tex]:
To simplify [tex]\(\frac{1}{i}\)[/tex], we multiply the numerator and the denominator by the complex conjugate of the denominator, which is [tex]\(-i\)[/tex]:
[tex]\[ \frac{1}{i} \cdot \frac{-i}{-i} = \frac{-i}{-i^2} \][/tex]
Since [tex]\(i^2 = -1\)[/tex], this becomes:
[tex]\[ \frac{-i}{(-1)} = i \][/tex]
So, our final simplified result is:
[tex]\[ \frac{\sqrt{25a}}{\sqrt{-25a}} = i \][/tex]
Or more generally (considering the presence of similar patterns of roots in the answer):
[tex]\[ \frac{\sqrt{a}}{\sqrt{-a}} \][/tex]
This retains the simplified and factored form:
[tex]\[ \sqrt{a}/\sqrt{-a} = i \][/tex]
1. Simplify the numerator:
The expression in the numerator is [tex]\(\sqrt{25a}\)[/tex].
We can simplify this as:
[tex]\[ \sqrt{25a} = \sqrt{25} \cdot \sqrt{a} \][/tex]
Since [tex]\(\sqrt{25} = 5\)[/tex], the simplified numerator is:
[tex]\[ 5\sqrt{a} \][/tex]
2. Simplify the denominator:
The expression in the denominator is [tex]\(\sqrt{-25a}\)[/tex].
We can simplify this as:
[tex]\[ \sqrt{-25a} = \sqrt{-1 \cdot 25a} = \sqrt{25a} \cdot \sqrt{-1} \][/tex]
Again, [tex]\(\sqrt{25} = 5\)[/tex], and [tex]\(\sqrt{-1} = i\)[/tex] (where [tex]\(i\)[/tex] is the imaginary unit). Therefore, the simplified denominator is:
[tex]\[ 5i\sqrt{a} \][/tex]
3. Combine the simplified numerator and denominator:
Now we have:
[tex]\[ \frac{\sqrt{25a}}{\sqrt{-25a}} = \frac{5\sqrt{a}}{5i\sqrt{a}} \][/tex]
Notice that [tex]\(5\sqrt{a}\)[/tex] in the numerator and denominator cancels out, so we are left with:
[tex]\[ \frac{5\sqrt{a}}{5i\sqrt{a}} = \frac{1}{i} \][/tex]
4. Simplify [tex]\(\frac{1}{i}\)[/tex]:
To simplify [tex]\(\frac{1}{i}\)[/tex], we multiply the numerator and the denominator by the complex conjugate of the denominator, which is [tex]\(-i\)[/tex]:
[tex]\[ \frac{1}{i} \cdot \frac{-i}{-i} = \frac{-i}{-i^2} \][/tex]
Since [tex]\(i^2 = -1\)[/tex], this becomes:
[tex]\[ \frac{-i}{(-1)} = i \][/tex]
So, our final simplified result is:
[tex]\[ \frac{\sqrt{25a}}{\sqrt{-25a}} = i \][/tex]
Or more generally (considering the presence of similar patterns of roots in the answer):
[tex]\[ \frac{\sqrt{a}}{\sqrt{-a}} \][/tex]
This retains the simplified and factored form:
[tex]\[ \sqrt{a}/\sqrt{-a} = i \][/tex]
We appreciate your visit. Hopefully, the answers you found were beneficial. Don't hesitate to come back for more information. Thanks for using our service. We're always here to provide accurate and up-to-date answers to all your queries. We're dedicated to helping you find the answers you need at Westonci.ca. Don't hesitate to return for more.