Discover the answers you need at Westonci.ca, where experts provide clear and concise information on various topics. Experience the ease of finding quick and accurate answers to your questions from professionals on our platform. Explore comprehensive solutions to your questions from a wide range of professionals on our user-friendly platform.
Sagot :
To find the correct equation to calculate the area of the circular base [tex]\( B \)[/tex] of the given volcano model, we need to apply the formula for the volume of a cone. The volume [tex]\( V \)[/tex] of a cone is given by the formula:
[tex]\[ V = \frac{1}{3} B h \][/tex]
where:
- [tex]\( V \)[/tex] is the volume,
- [tex]\( B \)[/tex] is the area of the base,
- [tex]\( h \)[/tex] is the height.
Here, we have:
- Volume [tex]\( V = 800 \)[/tex] cubic centimeters,
- Height [tex]\( h = 46 \)[/tex] centimeters.
Our goal is to match this information to one of the given equations.
### Step-by-Step Solution:
1. Start by writing the formula for the volume of the cone:
[tex]\[ V = \frac{1}{3} B h \][/tex]
2. Substitute the given values [tex]\( V = 800 \)[/tex] and [tex]\( h = 46 \)[/tex] into the formula:
[tex]\[ 800 = \frac{1}{3} B \cdot 46 \][/tex]
3. Rearrange the equation to isolate [tex]\( B \)[/tex]:
[tex]\[ B = \frac{3 \cdot 800}{46} \][/tex]
Thus, the equation that correctly represents this relationship is:
[tex]\[ 800 = \frac{1}{3} B \cdot 46 \][/tex]
### Comparison with Given Options:
After examining the provided options, we find:
- [tex]\( 46 = \frac{1}{3}(B)^2(800) \)[/tex]
- [tex]\( 46 = \frac{1}{3}(B)(800) \)[/tex]
- [tex]\( 800 = \frac{1}{3}(B^2)(46) \)[/tex]
- [tex]\( 800 = \frac{1}{3}(B)(46) \)[/tex]
The correct choice matches exactly with our derived equation:
[tex]\[ 800 = \frac{1}{3}(B)(46) \][/tex]
So, the equation that can be used to find the area of the circular base [tex]\( B \)[/tex] of the cone is:
[tex]\[ 800 = \frac{1}{3}(B)(46) \][/tex]
[tex]\[ V = \frac{1}{3} B h \][/tex]
where:
- [tex]\( V \)[/tex] is the volume,
- [tex]\( B \)[/tex] is the area of the base,
- [tex]\( h \)[/tex] is the height.
Here, we have:
- Volume [tex]\( V = 800 \)[/tex] cubic centimeters,
- Height [tex]\( h = 46 \)[/tex] centimeters.
Our goal is to match this information to one of the given equations.
### Step-by-Step Solution:
1. Start by writing the formula for the volume of the cone:
[tex]\[ V = \frac{1}{3} B h \][/tex]
2. Substitute the given values [tex]\( V = 800 \)[/tex] and [tex]\( h = 46 \)[/tex] into the formula:
[tex]\[ 800 = \frac{1}{3} B \cdot 46 \][/tex]
3. Rearrange the equation to isolate [tex]\( B \)[/tex]:
[tex]\[ B = \frac{3 \cdot 800}{46} \][/tex]
Thus, the equation that correctly represents this relationship is:
[tex]\[ 800 = \frac{1}{3} B \cdot 46 \][/tex]
### Comparison with Given Options:
After examining the provided options, we find:
- [tex]\( 46 = \frac{1}{3}(B)^2(800) \)[/tex]
- [tex]\( 46 = \frac{1}{3}(B)(800) \)[/tex]
- [tex]\( 800 = \frac{1}{3}(B^2)(46) \)[/tex]
- [tex]\( 800 = \frac{1}{3}(B)(46) \)[/tex]
The correct choice matches exactly with our derived equation:
[tex]\[ 800 = \frac{1}{3}(B)(46) \][/tex]
So, the equation that can be used to find the area of the circular base [tex]\( B \)[/tex] of the cone is:
[tex]\[ 800 = \frac{1}{3}(B)(46) \][/tex]
We hope our answers were helpful. Return anytime for more information and answers to any other questions you may have. We appreciate your visit. Our platform is always here to offer accurate and reliable answers. Return anytime. Get the answers you need at Westonci.ca. Stay informed with our latest expert advice.