Welcome to Westonci.ca, where your questions are met with accurate answers from a community of experts and enthusiasts. Join our Q&A platform and get accurate answers to all your questions from professionals across multiple disciplines. Experience the ease of finding precise answers to your questions from a knowledgeable community of experts.
Sagot :
To determine the height of the rectangular prism given its volume and the area of its base, we start with the relationship that the volume of a rectangular prism is the product of its base area and height.
Let's denote:
- [tex]\( V \)[/tex] as the volume of the rectangular prism, which is [tex]\( x^3 - 3x^2 + 5x - 3 \)[/tex].
- [tex]\( A \)[/tex] as the area of the base of the prism, which is [tex]\( x^2 - 2 \)[/tex].
The relationship between the volume [tex]\( V \)[/tex], base area [tex]\( A \)[/tex], and height [tex]\( h \)[/tex] is given by the formula:
[tex]\[ V = A \times h \][/tex]
We need to find the height [tex]\( h \)[/tex]. To do this, we solve for [tex]\( h \)[/tex] by dividing the volume [tex]\( V \)[/tex] by the base area [tex]\( A \)[/tex]:
[tex]\[ h = \frac{V}{A} = \frac{x^3 - 3x^2 + 5x - 3}{x^2 - 2} \][/tex]
By performing the division, we get:
[tex]\[ h = \frac{x^3 - 3x^2 + 5x - 3}{x^2 - 2} \][/tex]
This fraction can be simplified by polynomial division. Let's break down the polynomial division step by step:
1. Divide the leading term of the numerator [tex]\( x^3 \)[/tex] by the leading term of the denominator [tex]\( x^2 \)[/tex]:
[tex]\[\frac{x^3}{x^2} = x\][/tex]
2. Multiply [tex]\( x \)[/tex] by the entire denominator [tex]\( x^2 - 2 \)[/tex]:
[tex]\[ x \cdot (x^2 - 2) = x^3 - 2x \][/tex]
3. Subtract this product from the original numerator:
[tex]\[ (x^3 - 3x^2 + 5x - 3) - (x^3 - 2x) = -3x^2 + 7x - 3 \][/tex]
4. Divide the new leading term [tex]\( -3x^2 \)[/tex] by the leading term [tex]\( x^2 \)[/tex]:
[tex]\[\frac{-3x^2}{x^2} = -3\][/tex]
5. Multiply [tex]\(-3\)[/tex] by the denominator [tex]\( x^2 - 2 \)[/tex]:
[tex]\[ -3 \cdot (x^2 - 2) = -3x^2 + 6 \][/tex]
6. Subtract this product from the previous result:
[tex]\[ (-3x^2 + 7x - 3) - (-3x^2 + 6) = 7x - 9 \][/tex]
So, after the polynomial division, the height is expressed as:
[tex]\[ h = x - 3 + \frac{7x - 9}{x^2 - 2} \][/tex]
Thus, the height of the prism is:
[tex]\[ x - 3 + \frac{7x - 9}{x^2 - 2} \][/tex]
So, the correct answer is:
[tex]\[ \boxed{x - 3 + \frac{7 x - 9}{x^2 - 2}} \][/tex]
Let's denote:
- [tex]\( V \)[/tex] as the volume of the rectangular prism, which is [tex]\( x^3 - 3x^2 + 5x - 3 \)[/tex].
- [tex]\( A \)[/tex] as the area of the base of the prism, which is [tex]\( x^2 - 2 \)[/tex].
The relationship between the volume [tex]\( V \)[/tex], base area [tex]\( A \)[/tex], and height [tex]\( h \)[/tex] is given by the formula:
[tex]\[ V = A \times h \][/tex]
We need to find the height [tex]\( h \)[/tex]. To do this, we solve for [tex]\( h \)[/tex] by dividing the volume [tex]\( V \)[/tex] by the base area [tex]\( A \)[/tex]:
[tex]\[ h = \frac{V}{A} = \frac{x^3 - 3x^2 + 5x - 3}{x^2 - 2} \][/tex]
By performing the division, we get:
[tex]\[ h = \frac{x^3 - 3x^2 + 5x - 3}{x^2 - 2} \][/tex]
This fraction can be simplified by polynomial division. Let's break down the polynomial division step by step:
1. Divide the leading term of the numerator [tex]\( x^3 \)[/tex] by the leading term of the denominator [tex]\( x^2 \)[/tex]:
[tex]\[\frac{x^3}{x^2} = x\][/tex]
2. Multiply [tex]\( x \)[/tex] by the entire denominator [tex]\( x^2 - 2 \)[/tex]:
[tex]\[ x \cdot (x^2 - 2) = x^3 - 2x \][/tex]
3. Subtract this product from the original numerator:
[tex]\[ (x^3 - 3x^2 + 5x - 3) - (x^3 - 2x) = -3x^2 + 7x - 3 \][/tex]
4. Divide the new leading term [tex]\( -3x^2 \)[/tex] by the leading term [tex]\( x^2 \)[/tex]:
[tex]\[\frac{-3x^2}{x^2} = -3\][/tex]
5. Multiply [tex]\(-3\)[/tex] by the denominator [tex]\( x^2 - 2 \)[/tex]:
[tex]\[ -3 \cdot (x^2 - 2) = -3x^2 + 6 \][/tex]
6. Subtract this product from the previous result:
[tex]\[ (-3x^2 + 7x - 3) - (-3x^2 + 6) = 7x - 9 \][/tex]
So, after the polynomial division, the height is expressed as:
[tex]\[ h = x - 3 + \frac{7x - 9}{x^2 - 2} \][/tex]
Thus, the height of the prism is:
[tex]\[ x - 3 + \frac{7x - 9}{x^2 - 2} \][/tex]
So, the correct answer is:
[tex]\[ \boxed{x - 3 + \frac{7 x - 9}{x^2 - 2}} \][/tex]
Thank you for your visit. We're dedicated to helping you find the information you need, whenever you need it. Thanks for using our platform. We aim to provide accurate and up-to-date answers to all your queries. Come back soon. Get the answers you need at Westonci.ca. Stay informed by returning for our latest expert advice.