Westonci.ca offers fast, accurate answers to your questions. Join our community and get the insights you need now. Discover a wealth of knowledge from professionals across various disciplines on our user-friendly Q&A platform. Experience the convenience of finding accurate answers to your questions from knowledgeable experts on our platform.
Sagot :
Sure, I'll walk you through the step-by-step process to calculate the Pearson correlation coefficient between the [tex]\(x\)[/tex] and [tex]\(y\)[/tex] variables, given the incomplete dataset and assuming that the missing value in [tex]\( y \)[/tex] can be imputed based on the remaining values.
### Step 1: Identify the missing value in [tex]\( y \)[/tex]
First, we need to impute the missing [tex]\( y \)[/tex] value using the available data in the [tex]\( y \)[/tex] column.
Given [tex]\( y = [9, 11, ?, 8, 7] \)[/tex], let's denote the missing value as [tex]\( y_3 \)[/tex].
We assume that the missing value in [tex]\( y \)[/tex] is equal to the mean of the rest of the [tex]\( y \)[/tex] values:
[tex]\[ \text{Mean of remaining } y = \frac{9 + 11 + 8 + 7}{4} = \frac{35}{4} = 8.75 \][/tex]
So, [tex]\( y_3 = 8.75 \)[/tex].
### Step 2: Complete the data
Now, we have the complete dataset:
[tex]\[ x = [6, 1, 10, 4, 8] \][/tex]
[tex]\[ y = [9, 11, 8.75, 8, 7] \][/tex]
### Step 3: Calculate the means of [tex]\( x \)[/tex] and [tex]\( y \)[/tex]
[tex]\[ \text{Mean of } x = \frac{6 + 1 + 10 + 4 + 8}{5} = \frac{29}{5} = 5.8 \][/tex]
[tex]\[ \text{Mean of } y = \frac{9 + 11 + 8.75 + 8 + 7}{5} = \frac{43.75}{5} = 8.75 \][/tex]
### Step 4: Calculate the covariance between [tex]\( x \)[/tex] and [tex]\( y \)[/tex]
[tex]\[ \text{Cov}(x, y) = \frac{1}{N} \sum_{i=1}^{N} \left( (x_i - \bar{x})(y_i - \bar{y}) \right) \][/tex]
[tex]\[ \text{Cov}(x, y) = \frac{1}{5} \left( (6 - 5.8)(9 - 8.75) + (1 - 5.8)(11 - 8.75) + (10 - 5.8)(8.75 - 8.75) + (4 - 5.8)(8 - 8.75) + (8 - 5.8)(7 - 8.75) \right) \][/tex]
[tex]\[ = \frac{1}{5} \left( 0.2 \times 0.25 + (-4.8) \times 2.25 + 4.2 \times 0 + (-1.8) \times -0.75 + 2.2 \times -1.75 \right) \][/tex]
[tex]\[ = \frac{1}{5} \left( 0.05 + (-10.8) + 0 + 1.35 + (-3.85) \right) \][/tex]
[tex]\[ = \frac{1}{5} \left( -13.25 \right) = -2.65 \][/tex]
### Step 5: Calculate the standard deviations of [tex]\( x \)[/tex] and [tex]\( y \)[/tex]
[tex]\[ \text{Std}(x) = \sqrt{ \frac{1}{N} \sum_{i=1}^{N} (x_i - \bar{x})^2 } \][/tex]
[tex]\[ \text{Std}(x) = \sqrt{ \frac{1}{5} \left( (6-5.8)^2 + (1-5.8)^2 + (10-5.8)^2 + (4-5.8)^2 + (8-5.8)^2 \right) } \][/tex]
[tex]\[ = \sqrt{ \frac{1}{5} \left( 0.04 + 23.04 + 17.64 + 3.24 + 4.84 \right) } \][/tex]
[tex]\[ = \sqrt{ \frac{48.8}{5} } = \sqrt{9.76} \approx 3.12 \][/tex]
[tex]\[ \text{Std}(y) = \sqrt{ \frac{1}{N} \sum_{i=1}^{N} (y_i - \bar{y})^2 } \][/tex]
[tex]\[ = \sqrt{ \frac{1}{5} \left( (9-8.75)^2 + (11-8.75)^2 + (8.75-8.75)^2 + (8-8.75)^2 + (7-8.75)^2 \right) } \][/tex]
[tex]\[ = \sqrt{ \frac{1}{5} \left( 0.0625 + 5.0625 + 0 + 0.5625 + 3.0625 \right) } \][/tex]
[tex]\[ = \sqrt{ \frac{8.75}{5} } = \sqrt{1.75} \approx 1.32 \][/tex]
### Step 6: Calculate the Pearson correlation coefficient
[tex]\[ r = \frac{\text{Cov}(x, y)}{\text{Std}(x) \times \text{Std}(y)} \][/tex]
[tex]\[ r = \frac{-2.65}{3.12 \times 1.32} \approx \frac{-2.65}{4.12} \approx -0.641 \][/tex]
### Summary
The Pearson correlation coefficient between [tex]\( x \)[/tex] and [tex]\( y \)[/tex] is approximately [tex]\( -0.641 \)[/tex]. Other intermediate results are:
- The imputed missing value in [tex]\( y \)[/tex] is [tex]\( 8.75 \)[/tex].
- The mean of [tex]\( x \)[/tex] is [tex]\( 5.8 \)[/tex].
- The mean of [tex]\( y \)[/tex] is [tex]\( 8.75 \)[/tex].
- The covariance between [tex]\( x \)[/tex] and [tex]\( y \)[/tex] is [tex]\( -2.65 \)[/tex].
- The standard deviation of [tex]\( x \)[/tex] is [tex]\( 3.12 \)[/tex].
- The standard deviation of [tex]\( y \)[/tex] is [tex]\( 1.32 \)[/tex].
### Step 1: Identify the missing value in [tex]\( y \)[/tex]
First, we need to impute the missing [tex]\( y \)[/tex] value using the available data in the [tex]\( y \)[/tex] column.
Given [tex]\( y = [9, 11, ?, 8, 7] \)[/tex], let's denote the missing value as [tex]\( y_3 \)[/tex].
We assume that the missing value in [tex]\( y \)[/tex] is equal to the mean of the rest of the [tex]\( y \)[/tex] values:
[tex]\[ \text{Mean of remaining } y = \frac{9 + 11 + 8 + 7}{4} = \frac{35}{4} = 8.75 \][/tex]
So, [tex]\( y_3 = 8.75 \)[/tex].
### Step 2: Complete the data
Now, we have the complete dataset:
[tex]\[ x = [6, 1, 10, 4, 8] \][/tex]
[tex]\[ y = [9, 11, 8.75, 8, 7] \][/tex]
### Step 3: Calculate the means of [tex]\( x \)[/tex] and [tex]\( y \)[/tex]
[tex]\[ \text{Mean of } x = \frac{6 + 1 + 10 + 4 + 8}{5} = \frac{29}{5} = 5.8 \][/tex]
[tex]\[ \text{Mean of } y = \frac{9 + 11 + 8.75 + 8 + 7}{5} = \frac{43.75}{5} = 8.75 \][/tex]
### Step 4: Calculate the covariance between [tex]\( x \)[/tex] and [tex]\( y \)[/tex]
[tex]\[ \text{Cov}(x, y) = \frac{1}{N} \sum_{i=1}^{N} \left( (x_i - \bar{x})(y_i - \bar{y}) \right) \][/tex]
[tex]\[ \text{Cov}(x, y) = \frac{1}{5} \left( (6 - 5.8)(9 - 8.75) + (1 - 5.8)(11 - 8.75) + (10 - 5.8)(8.75 - 8.75) + (4 - 5.8)(8 - 8.75) + (8 - 5.8)(7 - 8.75) \right) \][/tex]
[tex]\[ = \frac{1}{5} \left( 0.2 \times 0.25 + (-4.8) \times 2.25 + 4.2 \times 0 + (-1.8) \times -0.75 + 2.2 \times -1.75 \right) \][/tex]
[tex]\[ = \frac{1}{5} \left( 0.05 + (-10.8) + 0 + 1.35 + (-3.85) \right) \][/tex]
[tex]\[ = \frac{1}{5} \left( -13.25 \right) = -2.65 \][/tex]
### Step 5: Calculate the standard deviations of [tex]\( x \)[/tex] and [tex]\( y \)[/tex]
[tex]\[ \text{Std}(x) = \sqrt{ \frac{1}{N} \sum_{i=1}^{N} (x_i - \bar{x})^2 } \][/tex]
[tex]\[ \text{Std}(x) = \sqrt{ \frac{1}{5} \left( (6-5.8)^2 + (1-5.8)^2 + (10-5.8)^2 + (4-5.8)^2 + (8-5.8)^2 \right) } \][/tex]
[tex]\[ = \sqrt{ \frac{1}{5} \left( 0.04 + 23.04 + 17.64 + 3.24 + 4.84 \right) } \][/tex]
[tex]\[ = \sqrt{ \frac{48.8}{5} } = \sqrt{9.76} \approx 3.12 \][/tex]
[tex]\[ \text{Std}(y) = \sqrt{ \frac{1}{N} \sum_{i=1}^{N} (y_i - \bar{y})^2 } \][/tex]
[tex]\[ = \sqrt{ \frac{1}{5} \left( (9-8.75)^2 + (11-8.75)^2 + (8.75-8.75)^2 + (8-8.75)^2 + (7-8.75)^2 \right) } \][/tex]
[tex]\[ = \sqrt{ \frac{1}{5} \left( 0.0625 + 5.0625 + 0 + 0.5625 + 3.0625 \right) } \][/tex]
[tex]\[ = \sqrt{ \frac{8.75}{5} } = \sqrt{1.75} \approx 1.32 \][/tex]
### Step 6: Calculate the Pearson correlation coefficient
[tex]\[ r = \frac{\text{Cov}(x, y)}{\text{Std}(x) \times \text{Std}(y)} \][/tex]
[tex]\[ r = \frac{-2.65}{3.12 \times 1.32} \approx \frac{-2.65}{4.12} \approx -0.641 \][/tex]
### Summary
The Pearson correlation coefficient between [tex]\( x \)[/tex] and [tex]\( y \)[/tex] is approximately [tex]\( -0.641 \)[/tex]. Other intermediate results are:
- The imputed missing value in [tex]\( y \)[/tex] is [tex]\( 8.75 \)[/tex].
- The mean of [tex]\( x \)[/tex] is [tex]\( 5.8 \)[/tex].
- The mean of [tex]\( y \)[/tex] is [tex]\( 8.75 \)[/tex].
- The covariance between [tex]\( x \)[/tex] and [tex]\( y \)[/tex] is [tex]\( -2.65 \)[/tex].
- The standard deviation of [tex]\( x \)[/tex] is [tex]\( 3.12 \)[/tex].
- The standard deviation of [tex]\( y \)[/tex] is [tex]\( 1.32 \)[/tex].
Your visit means a lot to us. Don't hesitate to return for more reliable answers to any questions you may have. We hope you found this helpful. Feel free to come back anytime for more accurate answers and updated information. Stay curious and keep coming back to Westonci.ca for answers to all your burning questions.