At Westonci.ca, we make it easy for you to get the answers you need from a community of knowledgeable individuals. Join our Q&A platform to connect with experts dedicated to providing accurate answers to your questions in various fields. Explore comprehensive solutions to your questions from a wide range of professionals on our user-friendly platform.
Sagot :
Sure, I'll walk you through the step-by-step process to calculate the Pearson correlation coefficient between the [tex]\(x\)[/tex] and [tex]\(y\)[/tex] variables, given the incomplete dataset and assuming that the missing value in [tex]\( y \)[/tex] can be imputed based on the remaining values.
### Step 1: Identify the missing value in [tex]\( y \)[/tex]
First, we need to impute the missing [tex]\( y \)[/tex] value using the available data in the [tex]\( y \)[/tex] column.
Given [tex]\( y = [9, 11, ?, 8, 7] \)[/tex], let's denote the missing value as [tex]\( y_3 \)[/tex].
We assume that the missing value in [tex]\( y \)[/tex] is equal to the mean of the rest of the [tex]\( y \)[/tex] values:
[tex]\[ \text{Mean of remaining } y = \frac{9 + 11 + 8 + 7}{4} = \frac{35}{4} = 8.75 \][/tex]
So, [tex]\( y_3 = 8.75 \)[/tex].
### Step 2: Complete the data
Now, we have the complete dataset:
[tex]\[ x = [6, 1, 10, 4, 8] \][/tex]
[tex]\[ y = [9, 11, 8.75, 8, 7] \][/tex]
### Step 3: Calculate the means of [tex]\( x \)[/tex] and [tex]\( y \)[/tex]
[tex]\[ \text{Mean of } x = \frac{6 + 1 + 10 + 4 + 8}{5} = \frac{29}{5} = 5.8 \][/tex]
[tex]\[ \text{Mean of } y = \frac{9 + 11 + 8.75 + 8 + 7}{5} = \frac{43.75}{5} = 8.75 \][/tex]
### Step 4: Calculate the covariance between [tex]\( x \)[/tex] and [tex]\( y \)[/tex]
[tex]\[ \text{Cov}(x, y) = \frac{1}{N} \sum_{i=1}^{N} \left( (x_i - \bar{x})(y_i - \bar{y}) \right) \][/tex]
[tex]\[ \text{Cov}(x, y) = \frac{1}{5} \left( (6 - 5.8)(9 - 8.75) + (1 - 5.8)(11 - 8.75) + (10 - 5.8)(8.75 - 8.75) + (4 - 5.8)(8 - 8.75) + (8 - 5.8)(7 - 8.75) \right) \][/tex]
[tex]\[ = \frac{1}{5} \left( 0.2 \times 0.25 + (-4.8) \times 2.25 + 4.2 \times 0 + (-1.8) \times -0.75 + 2.2 \times -1.75 \right) \][/tex]
[tex]\[ = \frac{1}{5} \left( 0.05 + (-10.8) + 0 + 1.35 + (-3.85) \right) \][/tex]
[tex]\[ = \frac{1}{5} \left( -13.25 \right) = -2.65 \][/tex]
### Step 5: Calculate the standard deviations of [tex]\( x \)[/tex] and [tex]\( y \)[/tex]
[tex]\[ \text{Std}(x) = \sqrt{ \frac{1}{N} \sum_{i=1}^{N} (x_i - \bar{x})^2 } \][/tex]
[tex]\[ \text{Std}(x) = \sqrt{ \frac{1}{5} \left( (6-5.8)^2 + (1-5.8)^2 + (10-5.8)^2 + (4-5.8)^2 + (8-5.8)^2 \right) } \][/tex]
[tex]\[ = \sqrt{ \frac{1}{5} \left( 0.04 + 23.04 + 17.64 + 3.24 + 4.84 \right) } \][/tex]
[tex]\[ = \sqrt{ \frac{48.8}{5} } = \sqrt{9.76} \approx 3.12 \][/tex]
[tex]\[ \text{Std}(y) = \sqrt{ \frac{1}{N} \sum_{i=1}^{N} (y_i - \bar{y})^2 } \][/tex]
[tex]\[ = \sqrt{ \frac{1}{5} \left( (9-8.75)^2 + (11-8.75)^2 + (8.75-8.75)^2 + (8-8.75)^2 + (7-8.75)^2 \right) } \][/tex]
[tex]\[ = \sqrt{ \frac{1}{5} \left( 0.0625 + 5.0625 + 0 + 0.5625 + 3.0625 \right) } \][/tex]
[tex]\[ = \sqrt{ \frac{8.75}{5} } = \sqrt{1.75} \approx 1.32 \][/tex]
### Step 6: Calculate the Pearson correlation coefficient
[tex]\[ r = \frac{\text{Cov}(x, y)}{\text{Std}(x) \times \text{Std}(y)} \][/tex]
[tex]\[ r = \frac{-2.65}{3.12 \times 1.32} \approx \frac{-2.65}{4.12} \approx -0.641 \][/tex]
### Summary
The Pearson correlation coefficient between [tex]\( x \)[/tex] and [tex]\( y \)[/tex] is approximately [tex]\( -0.641 \)[/tex]. Other intermediate results are:
- The imputed missing value in [tex]\( y \)[/tex] is [tex]\( 8.75 \)[/tex].
- The mean of [tex]\( x \)[/tex] is [tex]\( 5.8 \)[/tex].
- The mean of [tex]\( y \)[/tex] is [tex]\( 8.75 \)[/tex].
- The covariance between [tex]\( x \)[/tex] and [tex]\( y \)[/tex] is [tex]\( -2.65 \)[/tex].
- The standard deviation of [tex]\( x \)[/tex] is [tex]\( 3.12 \)[/tex].
- The standard deviation of [tex]\( y \)[/tex] is [tex]\( 1.32 \)[/tex].
### Step 1: Identify the missing value in [tex]\( y \)[/tex]
First, we need to impute the missing [tex]\( y \)[/tex] value using the available data in the [tex]\( y \)[/tex] column.
Given [tex]\( y = [9, 11, ?, 8, 7] \)[/tex], let's denote the missing value as [tex]\( y_3 \)[/tex].
We assume that the missing value in [tex]\( y \)[/tex] is equal to the mean of the rest of the [tex]\( y \)[/tex] values:
[tex]\[ \text{Mean of remaining } y = \frac{9 + 11 + 8 + 7}{4} = \frac{35}{4} = 8.75 \][/tex]
So, [tex]\( y_3 = 8.75 \)[/tex].
### Step 2: Complete the data
Now, we have the complete dataset:
[tex]\[ x = [6, 1, 10, 4, 8] \][/tex]
[tex]\[ y = [9, 11, 8.75, 8, 7] \][/tex]
### Step 3: Calculate the means of [tex]\( x \)[/tex] and [tex]\( y \)[/tex]
[tex]\[ \text{Mean of } x = \frac{6 + 1 + 10 + 4 + 8}{5} = \frac{29}{5} = 5.8 \][/tex]
[tex]\[ \text{Mean of } y = \frac{9 + 11 + 8.75 + 8 + 7}{5} = \frac{43.75}{5} = 8.75 \][/tex]
### Step 4: Calculate the covariance between [tex]\( x \)[/tex] and [tex]\( y \)[/tex]
[tex]\[ \text{Cov}(x, y) = \frac{1}{N} \sum_{i=1}^{N} \left( (x_i - \bar{x})(y_i - \bar{y}) \right) \][/tex]
[tex]\[ \text{Cov}(x, y) = \frac{1}{5} \left( (6 - 5.8)(9 - 8.75) + (1 - 5.8)(11 - 8.75) + (10 - 5.8)(8.75 - 8.75) + (4 - 5.8)(8 - 8.75) + (8 - 5.8)(7 - 8.75) \right) \][/tex]
[tex]\[ = \frac{1}{5} \left( 0.2 \times 0.25 + (-4.8) \times 2.25 + 4.2 \times 0 + (-1.8) \times -0.75 + 2.2 \times -1.75 \right) \][/tex]
[tex]\[ = \frac{1}{5} \left( 0.05 + (-10.8) + 0 + 1.35 + (-3.85) \right) \][/tex]
[tex]\[ = \frac{1}{5} \left( -13.25 \right) = -2.65 \][/tex]
### Step 5: Calculate the standard deviations of [tex]\( x \)[/tex] and [tex]\( y \)[/tex]
[tex]\[ \text{Std}(x) = \sqrt{ \frac{1}{N} \sum_{i=1}^{N} (x_i - \bar{x})^2 } \][/tex]
[tex]\[ \text{Std}(x) = \sqrt{ \frac{1}{5} \left( (6-5.8)^2 + (1-5.8)^2 + (10-5.8)^2 + (4-5.8)^2 + (8-5.8)^2 \right) } \][/tex]
[tex]\[ = \sqrt{ \frac{1}{5} \left( 0.04 + 23.04 + 17.64 + 3.24 + 4.84 \right) } \][/tex]
[tex]\[ = \sqrt{ \frac{48.8}{5} } = \sqrt{9.76} \approx 3.12 \][/tex]
[tex]\[ \text{Std}(y) = \sqrt{ \frac{1}{N} \sum_{i=1}^{N} (y_i - \bar{y})^2 } \][/tex]
[tex]\[ = \sqrt{ \frac{1}{5} \left( (9-8.75)^2 + (11-8.75)^2 + (8.75-8.75)^2 + (8-8.75)^2 + (7-8.75)^2 \right) } \][/tex]
[tex]\[ = \sqrt{ \frac{1}{5} \left( 0.0625 + 5.0625 + 0 + 0.5625 + 3.0625 \right) } \][/tex]
[tex]\[ = \sqrt{ \frac{8.75}{5} } = \sqrt{1.75} \approx 1.32 \][/tex]
### Step 6: Calculate the Pearson correlation coefficient
[tex]\[ r = \frac{\text{Cov}(x, y)}{\text{Std}(x) \times \text{Std}(y)} \][/tex]
[tex]\[ r = \frac{-2.65}{3.12 \times 1.32} \approx \frac{-2.65}{4.12} \approx -0.641 \][/tex]
### Summary
The Pearson correlation coefficient between [tex]\( x \)[/tex] and [tex]\( y \)[/tex] is approximately [tex]\( -0.641 \)[/tex]. Other intermediate results are:
- The imputed missing value in [tex]\( y \)[/tex] is [tex]\( 8.75 \)[/tex].
- The mean of [tex]\( x \)[/tex] is [tex]\( 5.8 \)[/tex].
- The mean of [tex]\( y \)[/tex] is [tex]\( 8.75 \)[/tex].
- The covariance between [tex]\( x \)[/tex] and [tex]\( y \)[/tex] is [tex]\( -2.65 \)[/tex].
- The standard deviation of [tex]\( x \)[/tex] is [tex]\( 3.12 \)[/tex].
- The standard deviation of [tex]\( y \)[/tex] is [tex]\( 1.32 \)[/tex].
We appreciate your time. Please revisit us for more reliable answers to any questions you may have. Thank you for choosing our platform. We're dedicated to providing the best answers for all your questions. Visit us again. We're dedicated to helping you find the answers you need at Westonci.ca. Don't hesitate to return for more.