Find the best solutions to your questions at Westonci.ca, the premier Q&A platform with a community of knowledgeable experts. Experience the convenience of finding accurate answers to your questions from knowledgeable professionals on our platform. Our platform offers a seamless experience for finding reliable answers from a network of knowledgeable professionals.
Sagot :
To determine whether a set of points represents a function, we use the definition of a function. In mathematical terms, a function is a relation in which each input (or x-coordinate) is associated with exactly one output (or y-coordinate).
First Group of Points: {(0, 1), (0, 5), (2, 6), (3, 3)}
- Here, we notice that the point (0, 1) and the point (0, 5) share the same x-coordinate (which is 0), but they have different y-coordinates (1 and 5 respectively).
- This means that for the input x = 0, we get two different outputs, y = 1 and y = 5.
Since there is an x-value that corresponds to more than one y-value, this group of points does not represent a function.
Second Group of Points: {(1, 4), (2, 7), (3, 1), (5, 7)}
- For this set, each x-coordinate is unique: 1, 2, 3, and 5.
- Each x-value maps to one and only one y-value, regardless of whether some y-values are repeated.
Since every x-coordinate in this group has a unique y-coordinate, this set of points represents a function.
### Conclusion:
- The key observation that distinguishes a function from a non-function in these groups of points is the uniqueness of the x-values.
- If there is any repeated x-value in the set of points with different corresponding y-values, then it cannot be called a function.
- Conversely, if each x-value in the set corresponds to exactly one y-value, then it represents a function.
So, being a function means establishing a relationship where each input (x-value) has one and only one output (y-value).
First Group of Points: {(0, 1), (0, 5), (2, 6), (3, 3)}
- Here, we notice that the point (0, 1) and the point (0, 5) share the same x-coordinate (which is 0), but they have different y-coordinates (1 and 5 respectively).
- This means that for the input x = 0, we get two different outputs, y = 1 and y = 5.
Since there is an x-value that corresponds to more than one y-value, this group of points does not represent a function.
Second Group of Points: {(1, 4), (2, 7), (3, 1), (5, 7)}
- For this set, each x-coordinate is unique: 1, 2, 3, and 5.
- Each x-value maps to one and only one y-value, regardless of whether some y-values are repeated.
Since every x-coordinate in this group has a unique y-coordinate, this set of points represents a function.
### Conclusion:
- The key observation that distinguishes a function from a non-function in these groups of points is the uniqueness of the x-values.
- If there is any repeated x-value in the set of points with different corresponding y-values, then it cannot be called a function.
- Conversely, if each x-value in the set corresponds to exactly one y-value, then it represents a function.
So, being a function means establishing a relationship where each input (x-value) has one and only one output (y-value).
Thank you for your visit. We are dedicated to helping you find the information you need, whenever you need it. We hope our answers were useful. Return anytime for more information and answers to any other questions you have. Thank you for visiting Westonci.ca, your go-to source for reliable answers. Come back soon for more expert insights.