Westonci.ca is the Q&A platform that connects you with experts who provide accurate and detailed answers. Connect with a community of experts ready to provide precise solutions to your questions on our user-friendly Q&A platform. Discover in-depth answers to your questions from a wide network of professionals on our user-friendly Q&A platform.
Sagot :
To identify the [tex]\(x\)[/tex]-intercept and [tex]\(y\)[/tex]-intercept of the line given by the equation [tex]\(2x - 5y = 20\)[/tex], we need to find the points where the line crosses the [tex]\(x\)[/tex]-axis and the [tex]\(y\)[/tex]-axis.
Finding the [tex]\(x\)[/tex]-intercept:
1. The [tex]\(x\)[/tex]-intercept is the point where the line crosses the [tex]\(x\)[/tex]-axis, which means [tex]\(y = 0\)[/tex].
2. Substitute [tex]\(y = 0\)[/tex] into the equation [tex]\(2x - 5y = 20\)[/tex]:
[tex]\[ 2x - 5(0) = 20 \][/tex]
3. Simplify the equation:
[tex]\[ 2x = 20 \][/tex]
4. Solve for [tex]\(x\)[/tex]:
[tex]\[ x = \frac{20}{2} = 10 \][/tex]
5. Therefore, the [tex]\(x\)[/tex]-intercept is [tex]\((10, 0)\)[/tex].
Finding the [tex]\(y\)[/tex]-intercept:
1. The [tex]\(y\)[/tex]-intercept is the point where the line crosses the [tex]\(y\)[/tex]-axis, which means [tex]\(x = 0\)[/tex].
2. Substitute [tex]\(x = 0\)[/tex] into the equation [tex]\(2x - 5y = 20\)[/tex]:
[tex]\[ 2(0) - 5y = 20 \][/tex]
3. Simplify the equation:
[tex]\[ -5y = 20 \][/tex]
4. Solve for [tex]\(y\)[/tex]:
[tex]\[ y = \frac{20}{-5} = -4 \][/tex]
5. Therefore, the [tex]\(y\)[/tex]-intercept is [tex]\((0, -4)\)[/tex].
So, the correct identification of the intercepts is:
- The [tex]\(x\)[/tex]-intercept is [tex]\((10, 0)\)[/tex]
- The [tex]\(y\)[/tex]-intercept is [tex]\((0, -4)\)[/tex]
Thus, the first statement is correct:
- The [tex]\(x\)[/tex]-intercept is [tex]\((10,0)\)[/tex] and the [tex]\(y\)[/tex]-intercept is [tex]\((0,-4)\)[/tex].
Finding the [tex]\(x\)[/tex]-intercept:
1. The [tex]\(x\)[/tex]-intercept is the point where the line crosses the [tex]\(x\)[/tex]-axis, which means [tex]\(y = 0\)[/tex].
2. Substitute [tex]\(y = 0\)[/tex] into the equation [tex]\(2x - 5y = 20\)[/tex]:
[tex]\[ 2x - 5(0) = 20 \][/tex]
3. Simplify the equation:
[tex]\[ 2x = 20 \][/tex]
4. Solve for [tex]\(x\)[/tex]:
[tex]\[ x = \frac{20}{2} = 10 \][/tex]
5. Therefore, the [tex]\(x\)[/tex]-intercept is [tex]\((10, 0)\)[/tex].
Finding the [tex]\(y\)[/tex]-intercept:
1. The [tex]\(y\)[/tex]-intercept is the point where the line crosses the [tex]\(y\)[/tex]-axis, which means [tex]\(x = 0\)[/tex].
2. Substitute [tex]\(x = 0\)[/tex] into the equation [tex]\(2x - 5y = 20\)[/tex]:
[tex]\[ 2(0) - 5y = 20 \][/tex]
3. Simplify the equation:
[tex]\[ -5y = 20 \][/tex]
4. Solve for [tex]\(y\)[/tex]:
[tex]\[ y = \frac{20}{-5} = -4 \][/tex]
5. Therefore, the [tex]\(y\)[/tex]-intercept is [tex]\((0, -4)\)[/tex].
So, the correct identification of the intercepts is:
- The [tex]\(x\)[/tex]-intercept is [tex]\((10, 0)\)[/tex]
- The [tex]\(y\)[/tex]-intercept is [tex]\((0, -4)\)[/tex]
Thus, the first statement is correct:
- The [tex]\(x\)[/tex]-intercept is [tex]\((10,0)\)[/tex] and the [tex]\(y\)[/tex]-intercept is [tex]\((0,-4)\)[/tex].
Thanks for stopping by. We strive to provide the best answers for all your questions. See you again soon. Thanks for using our platform. We aim to provide accurate and up-to-date answers to all your queries. Come back soon. We're glad you chose Westonci.ca. Revisit us for updated answers from our knowledgeable team.