Explore Westonci.ca, the leading Q&A site where experts provide accurate and helpful answers to all your questions. Connect with a community of experts ready to help you find accurate solutions to your questions quickly and efficiently. Join our platform to connect with experts ready to provide precise answers to your questions in different areas.
Sagot :
To identify the [tex]\(x\)[/tex]-intercept and [tex]\(y\)[/tex]-intercept of the line given by the equation [tex]\(2x - 5y = 20\)[/tex], we need to find the points where the line crosses the [tex]\(x\)[/tex]-axis and the [tex]\(y\)[/tex]-axis.
Finding the [tex]\(x\)[/tex]-intercept:
1. The [tex]\(x\)[/tex]-intercept is the point where the line crosses the [tex]\(x\)[/tex]-axis, which means [tex]\(y = 0\)[/tex].
2. Substitute [tex]\(y = 0\)[/tex] into the equation [tex]\(2x - 5y = 20\)[/tex]:
[tex]\[ 2x - 5(0) = 20 \][/tex]
3. Simplify the equation:
[tex]\[ 2x = 20 \][/tex]
4. Solve for [tex]\(x\)[/tex]:
[tex]\[ x = \frac{20}{2} = 10 \][/tex]
5. Therefore, the [tex]\(x\)[/tex]-intercept is [tex]\((10, 0)\)[/tex].
Finding the [tex]\(y\)[/tex]-intercept:
1. The [tex]\(y\)[/tex]-intercept is the point where the line crosses the [tex]\(y\)[/tex]-axis, which means [tex]\(x = 0\)[/tex].
2. Substitute [tex]\(x = 0\)[/tex] into the equation [tex]\(2x - 5y = 20\)[/tex]:
[tex]\[ 2(0) - 5y = 20 \][/tex]
3. Simplify the equation:
[tex]\[ -5y = 20 \][/tex]
4. Solve for [tex]\(y\)[/tex]:
[tex]\[ y = \frac{20}{-5} = -4 \][/tex]
5. Therefore, the [tex]\(y\)[/tex]-intercept is [tex]\((0, -4)\)[/tex].
So, the correct identification of the intercepts is:
- The [tex]\(x\)[/tex]-intercept is [tex]\((10, 0)\)[/tex]
- The [tex]\(y\)[/tex]-intercept is [tex]\((0, -4)\)[/tex]
Thus, the first statement is correct:
- The [tex]\(x\)[/tex]-intercept is [tex]\((10,0)\)[/tex] and the [tex]\(y\)[/tex]-intercept is [tex]\((0,-4)\)[/tex].
Finding the [tex]\(x\)[/tex]-intercept:
1. The [tex]\(x\)[/tex]-intercept is the point where the line crosses the [tex]\(x\)[/tex]-axis, which means [tex]\(y = 0\)[/tex].
2. Substitute [tex]\(y = 0\)[/tex] into the equation [tex]\(2x - 5y = 20\)[/tex]:
[tex]\[ 2x - 5(0) = 20 \][/tex]
3. Simplify the equation:
[tex]\[ 2x = 20 \][/tex]
4. Solve for [tex]\(x\)[/tex]:
[tex]\[ x = \frac{20}{2} = 10 \][/tex]
5. Therefore, the [tex]\(x\)[/tex]-intercept is [tex]\((10, 0)\)[/tex].
Finding the [tex]\(y\)[/tex]-intercept:
1. The [tex]\(y\)[/tex]-intercept is the point where the line crosses the [tex]\(y\)[/tex]-axis, which means [tex]\(x = 0\)[/tex].
2. Substitute [tex]\(x = 0\)[/tex] into the equation [tex]\(2x - 5y = 20\)[/tex]:
[tex]\[ 2(0) - 5y = 20 \][/tex]
3. Simplify the equation:
[tex]\[ -5y = 20 \][/tex]
4. Solve for [tex]\(y\)[/tex]:
[tex]\[ y = \frac{20}{-5} = -4 \][/tex]
5. Therefore, the [tex]\(y\)[/tex]-intercept is [tex]\((0, -4)\)[/tex].
So, the correct identification of the intercepts is:
- The [tex]\(x\)[/tex]-intercept is [tex]\((10, 0)\)[/tex]
- The [tex]\(y\)[/tex]-intercept is [tex]\((0, -4)\)[/tex]
Thus, the first statement is correct:
- The [tex]\(x\)[/tex]-intercept is [tex]\((10,0)\)[/tex] and the [tex]\(y\)[/tex]-intercept is [tex]\((0,-4)\)[/tex].
Thank you for your visit. We are dedicated to helping you find the information you need, whenever you need it. Thank you for your visit. We're committed to providing you with the best information available. Return anytime for more. Thank you for choosing Westonci.ca as your information source. We look forward to your next visit.