At Westonci.ca, we provide clear, reliable answers to all your questions. Join our vibrant community and get the solutions you need. Discover comprehensive solutions to your questions from a wide network of experts on our user-friendly platform. Explore comprehensive solutions to your questions from knowledgeable professionals across various fields on our platform.
Sagot :
Let's carefully analyze the problem Cyrus worked through:
1. Starting Equation:
[tex]\[ \frac{1}{3}(x-1)^2 = 12 \][/tex]
To eliminate the fraction, multiply both sides of the equation by 3:
[tex]\[ (x-1)^2 = 36 \quad \text{(Step 1)} \][/tex]
This step is correct.
2. Taking the Square Root:
The next step is where Cyrus encounters an error. When solving [tex]\((x-1)^2 = 36\)[/tex], we must consider both the positive and negative square roots:
[tex]\[ x - 1 = 6 \quad \text{or} \quad x - 1 = -6 \][/tex]
However, Cyrus wrote only:
[tex]\[ x - 1 = 6 \quad \text{(Step 2)} \][/tex]
Missing the second potential solution [tex]\((x - 1 = -6)\)[/tex] is the mistake.
3. Solving for [tex]\( x \)[/tex]:
From [tex]\(x - 1 = 6\)[/tex]:
[tex]\[ x = 6 + 1 = 7 \quad \text{(Step 3)} \][/tex]
This solution is correct but incomplete.
4. Finding the Second Solution:
We also need to consider:
[tex]\[ x - 1 = -6 \][/tex]
Solving for [tex]\( x \)[/tex]:
[tex]\[ x = -6 + 1 = -5 \][/tex]
Thus, the two solutions to the equation [tex]\(\frac{1}{3}(x-1)^2 = 12\)[/tex] are:
[tex]\[ x = 7 \quad \text{or} \quad x = -5 \][/tex]
Error Identification:
- Cyrus made an error in Step 2 by not considering both potential solutions [tex]\( x - 1 = 6 \)[/tex] and [tex]\( x - 1 = -6 \)[/tex].
To summarize, the error occurred in Step 2 because Cyrus did not account for both the positive and negative square roots when solving the equation. The correct solutions are [tex]\( x = 7 \)[/tex] and [tex]\( x = -5 \)[/tex].
1. Starting Equation:
[tex]\[ \frac{1}{3}(x-1)^2 = 12 \][/tex]
To eliminate the fraction, multiply both sides of the equation by 3:
[tex]\[ (x-1)^2 = 36 \quad \text{(Step 1)} \][/tex]
This step is correct.
2. Taking the Square Root:
The next step is where Cyrus encounters an error. When solving [tex]\((x-1)^2 = 36\)[/tex], we must consider both the positive and negative square roots:
[tex]\[ x - 1 = 6 \quad \text{or} \quad x - 1 = -6 \][/tex]
However, Cyrus wrote only:
[tex]\[ x - 1 = 6 \quad \text{(Step 2)} \][/tex]
Missing the second potential solution [tex]\((x - 1 = -6)\)[/tex] is the mistake.
3. Solving for [tex]\( x \)[/tex]:
From [tex]\(x - 1 = 6\)[/tex]:
[tex]\[ x = 6 + 1 = 7 \quad \text{(Step 3)} \][/tex]
This solution is correct but incomplete.
4. Finding the Second Solution:
We also need to consider:
[tex]\[ x - 1 = -6 \][/tex]
Solving for [tex]\( x \)[/tex]:
[tex]\[ x = -6 + 1 = -5 \][/tex]
Thus, the two solutions to the equation [tex]\(\frac{1}{3}(x-1)^2 = 12\)[/tex] are:
[tex]\[ x = 7 \quad \text{or} \quad x = -5 \][/tex]
Error Identification:
- Cyrus made an error in Step 2 by not considering both potential solutions [tex]\( x - 1 = 6 \)[/tex] and [tex]\( x - 1 = -6 \)[/tex].
To summarize, the error occurred in Step 2 because Cyrus did not account for both the positive and negative square roots when solving the equation. The correct solutions are [tex]\( x = 7 \)[/tex] and [tex]\( x = -5 \)[/tex].
Thank you for your visit. We are dedicated to helping you find the information you need, whenever you need it. We appreciate your visit. Our platform is always here to offer accurate and reliable answers. Return anytime. Westonci.ca is your trusted source for answers. Visit us again to find more information on diverse topics.