Looking for answers? Westonci.ca is your go-to Q&A platform, offering quick, trustworthy responses from a community of experts. Join our Q&A platform and connect with professionals ready to provide precise answers to your questions in various areas. Explore comprehensive solutions to your questions from a wide range of professionals on our user-friendly platform.
Sagot :
Let's carefully go through the steps Montiah performed to solve the quadratic equation [tex]\(3(x+8)^2 + 8 = 83\)[/tex].
1. Starting from the given equation [tex]\(3(x+8)^2 + 8 = 83\)[/tex]:
[tex]\[ 3(x+8)^2 + 8 = 83 \][/tex]
First, subtract 8 from both sides to isolate the quadratic term:
[tex]\[ 3(x+8)^2 + 8 - 8 = 83 - 8 \][/tex]
[tex]\[ 3(x+8)^2 = 75 \][/tex]
Step 1 is correct.
2. Next, divide both sides by 3 to solve for [tex]\((x+8)^2\)[/tex]:
[tex]\[ \frac{3(x+8)^2}{3} = \frac{75}{3} \][/tex]
[tex]\[ (x+8)^2 = 25 \][/tex]
In Step 2, Montiah has made an error. Instead of [tex]\((x+8)^2 = 25\)[/tex], she wrote [tex]\((x+8)^2 = 225\)[/tex].
3. If [tex]\((x+8)^2 = 25\)[/tex], to solve for [tex]\(x\)[/tex], take the square root of both sides:
[tex]\[ x+8 = \pm 5 \][/tex]
Step 3 is correct according to the corrected version of Step 2.
4. Solving [tex]\(x+8 = \pm 5\)[/tex]:
[tex]\[ x+8 = 5 \quad \text{or} \quad x+8 = -5 \][/tex]
[tex]\[ x = 5 - 8 \quad \text{or} \quad x = -5 - 8 \][/tex]
[tex]\[ x = -3 \quad \text{or} \quad x = -13 \][/tex]
Step 4 is correct according to the corrected version of Step 2.
Hence, Montiah made an error in Step 2.
1. Starting from the given equation [tex]\(3(x+8)^2 + 8 = 83\)[/tex]:
[tex]\[ 3(x+8)^2 + 8 = 83 \][/tex]
First, subtract 8 from both sides to isolate the quadratic term:
[tex]\[ 3(x+8)^2 + 8 - 8 = 83 - 8 \][/tex]
[tex]\[ 3(x+8)^2 = 75 \][/tex]
Step 1 is correct.
2. Next, divide both sides by 3 to solve for [tex]\((x+8)^2\)[/tex]:
[tex]\[ \frac{3(x+8)^2}{3} = \frac{75}{3} \][/tex]
[tex]\[ (x+8)^2 = 25 \][/tex]
In Step 2, Montiah has made an error. Instead of [tex]\((x+8)^2 = 25\)[/tex], she wrote [tex]\((x+8)^2 = 225\)[/tex].
3. If [tex]\((x+8)^2 = 25\)[/tex], to solve for [tex]\(x\)[/tex], take the square root of both sides:
[tex]\[ x+8 = \pm 5 \][/tex]
Step 3 is correct according to the corrected version of Step 2.
4. Solving [tex]\(x+8 = \pm 5\)[/tex]:
[tex]\[ x+8 = 5 \quad \text{or} \quad x+8 = -5 \][/tex]
[tex]\[ x = 5 - 8 \quad \text{or} \quad x = -5 - 8 \][/tex]
[tex]\[ x = -3 \quad \text{or} \quad x = -13 \][/tex]
Step 4 is correct according to the corrected version of Step 2.
Hence, Montiah made an error in Step 2.
Thank you for trusting us with your questions. We're here to help you find accurate answers quickly and efficiently. Thank you for your visit. We're committed to providing you with the best information available. Return anytime for more. Thank you for visiting Westonci.ca. Stay informed by coming back for more detailed answers.