Find the information you're looking for at Westonci.ca, the trusted Q&A platform with a community of knowledgeable experts. Find reliable answers to your questions from a wide community of knowledgeable experts on our user-friendly Q&A platform. Discover detailed answers to your questions from a wide network of experts on our comprehensive Q&A platform.
Sagot :
Let's carefully go through the steps Montiah performed to solve the quadratic equation [tex]\(3(x+8)^2 + 8 = 83\)[/tex].
1. Starting from the given equation [tex]\(3(x+8)^2 + 8 = 83\)[/tex]:
[tex]\[ 3(x+8)^2 + 8 = 83 \][/tex]
First, subtract 8 from both sides to isolate the quadratic term:
[tex]\[ 3(x+8)^2 + 8 - 8 = 83 - 8 \][/tex]
[tex]\[ 3(x+8)^2 = 75 \][/tex]
Step 1 is correct.
2. Next, divide both sides by 3 to solve for [tex]\((x+8)^2\)[/tex]:
[tex]\[ \frac{3(x+8)^2}{3} = \frac{75}{3} \][/tex]
[tex]\[ (x+8)^2 = 25 \][/tex]
In Step 2, Montiah has made an error. Instead of [tex]\((x+8)^2 = 25\)[/tex], she wrote [tex]\((x+8)^2 = 225\)[/tex].
3. If [tex]\((x+8)^2 = 25\)[/tex], to solve for [tex]\(x\)[/tex], take the square root of both sides:
[tex]\[ x+8 = \pm 5 \][/tex]
Step 3 is correct according to the corrected version of Step 2.
4. Solving [tex]\(x+8 = \pm 5\)[/tex]:
[tex]\[ x+8 = 5 \quad \text{or} \quad x+8 = -5 \][/tex]
[tex]\[ x = 5 - 8 \quad \text{or} \quad x = -5 - 8 \][/tex]
[tex]\[ x = -3 \quad \text{or} \quad x = -13 \][/tex]
Step 4 is correct according to the corrected version of Step 2.
Hence, Montiah made an error in Step 2.
1. Starting from the given equation [tex]\(3(x+8)^2 + 8 = 83\)[/tex]:
[tex]\[ 3(x+8)^2 + 8 = 83 \][/tex]
First, subtract 8 from both sides to isolate the quadratic term:
[tex]\[ 3(x+8)^2 + 8 - 8 = 83 - 8 \][/tex]
[tex]\[ 3(x+8)^2 = 75 \][/tex]
Step 1 is correct.
2. Next, divide both sides by 3 to solve for [tex]\((x+8)^2\)[/tex]:
[tex]\[ \frac{3(x+8)^2}{3} = \frac{75}{3} \][/tex]
[tex]\[ (x+8)^2 = 25 \][/tex]
In Step 2, Montiah has made an error. Instead of [tex]\((x+8)^2 = 25\)[/tex], she wrote [tex]\((x+8)^2 = 225\)[/tex].
3. If [tex]\((x+8)^2 = 25\)[/tex], to solve for [tex]\(x\)[/tex], take the square root of both sides:
[tex]\[ x+8 = \pm 5 \][/tex]
Step 3 is correct according to the corrected version of Step 2.
4. Solving [tex]\(x+8 = \pm 5\)[/tex]:
[tex]\[ x+8 = 5 \quad \text{or} \quad x+8 = -5 \][/tex]
[tex]\[ x = 5 - 8 \quad \text{or} \quad x = -5 - 8 \][/tex]
[tex]\[ x = -3 \quad \text{or} \quad x = -13 \][/tex]
Step 4 is correct according to the corrected version of Step 2.
Hence, Montiah made an error in Step 2.
We appreciate your visit. Hopefully, the answers you found were beneficial. Don't hesitate to come back for more information. Thanks for using our platform. We aim to provide accurate and up-to-date answers to all your queries. Come back soon. Keep exploring Westonci.ca for more insightful answers to your questions. We're here to help.