Westonci.ca is your trusted source for finding answers to all your questions. Ask, explore, and learn with our expert community. Our platform provides a seamless experience for finding precise answers from a network of experienced professionals. Explore comprehensive solutions to your questions from knowledgeable professionals across various fields on our platform.
Sagot :
Let's break down the transformation of the function [tex]\( f(x) = x^3 \)[/tex] to derive the function [tex]\( g(x) = -\frac{1}{2}(x-3)^3 \)[/tex].
We'll apply these transformations to the reference points (-1,-1), (0,0), and (1,1).
### Identifying the Transformations:
1. Horizontal Translation: The term inside the cube function [tex]\( (x - 3) \)[/tex] represents a translation to the right by 3 units.
2. Reflection and Vertical Scaling: The multiplier [tex]\( -\frac{1}{2} \)[/tex] indicates two separate effects:
- Reflection over the x-axis: The negative sign ([tex]\(-\)[/tex]) flips the graph upside down.
- Vertical Scaling: The factor [tex]\( \frac{1}{2} \)[/tex] compresses the graph vertically by a factor of 2.
### Applying Transformations to Reference Points:
1. Reference Point (-1, -1):
- Horizontal Translation: Move right by 3 units.
[tex]\[ (-1 + 3, -1) = (2, -1) \][/tex]
- Reflection and Vertical Scaling: Reflect over the x-axis and scale vertically by [tex]\(\frac{1}{2}\)[/tex].
[tex]\[ \left(2, -\frac{1}{2} \times -1\right) = (2, 0.5) \][/tex]
2. Reference Point (0, 0):
- Horizontal Translation: Move right by 3 units.
[tex]\[ (0 + 3, 0) = (3, 0) \][/tex]
- Reflection and Vertical Scaling: Reflect over the x-axis and scale vertically by [tex]\(\frac{1}{2}\)[/tex].
[tex]\[ \left(3, -\frac{1}{2} \times 0\right) = (3, 0) \][/tex]
3. Reference Point (1, 1):
- Horizontal Translation: Move right by 3 units.
[tex]\[ (1 + 3, 1) = (4, 1) \][/tex]
- Reflection and Vertical Scaling: Reflect over the x-axis and scale vertically by [tex]\(\frac{1}{2}\)[/tex].
[tex]\[ \left(4, -\frac{1}{2} \times 1\right) = (4, -0.5) \][/tex]
### Summary of Transformations:
[tex]\[ \begin{array}{|c|c|c|} \hline \text{Reference Points} & \text{First Transformation} & \text{Second Transformation} \\ \hline (-1, -1) & (2, -1) & (2, 0.5) \\ \hline (0, 0) & (3, 0) & (3, 0) \\ \hline (1, 1) & (4, 1) & (4, -0.5) \\ \hline \end{array} \][/tex]
Thus, the transformed points on the graph of [tex]\( g(x) \)[/tex] are:
[tex]\[ (2, 0.5), (3, 0), (4, -0.5) \][/tex]
By graphing these points on the same coordinate plane, you can visualize how the graph of [tex]\( f(x) = x^3 \)[/tex] has been transformed to produce the graph of [tex]\( g(x) = -\frac{1}{2}(x-3)^3 \)[/tex].
We'll apply these transformations to the reference points (-1,-1), (0,0), and (1,1).
### Identifying the Transformations:
1. Horizontal Translation: The term inside the cube function [tex]\( (x - 3) \)[/tex] represents a translation to the right by 3 units.
2. Reflection and Vertical Scaling: The multiplier [tex]\( -\frac{1}{2} \)[/tex] indicates two separate effects:
- Reflection over the x-axis: The negative sign ([tex]\(-\)[/tex]) flips the graph upside down.
- Vertical Scaling: The factor [tex]\( \frac{1}{2} \)[/tex] compresses the graph vertically by a factor of 2.
### Applying Transformations to Reference Points:
1. Reference Point (-1, -1):
- Horizontal Translation: Move right by 3 units.
[tex]\[ (-1 + 3, -1) = (2, -1) \][/tex]
- Reflection and Vertical Scaling: Reflect over the x-axis and scale vertically by [tex]\(\frac{1}{2}\)[/tex].
[tex]\[ \left(2, -\frac{1}{2} \times -1\right) = (2, 0.5) \][/tex]
2. Reference Point (0, 0):
- Horizontal Translation: Move right by 3 units.
[tex]\[ (0 + 3, 0) = (3, 0) \][/tex]
- Reflection and Vertical Scaling: Reflect over the x-axis and scale vertically by [tex]\(\frac{1}{2}\)[/tex].
[tex]\[ \left(3, -\frac{1}{2} \times 0\right) = (3, 0) \][/tex]
3. Reference Point (1, 1):
- Horizontal Translation: Move right by 3 units.
[tex]\[ (1 + 3, 1) = (4, 1) \][/tex]
- Reflection and Vertical Scaling: Reflect over the x-axis and scale vertically by [tex]\(\frac{1}{2}\)[/tex].
[tex]\[ \left(4, -\frac{1}{2} \times 1\right) = (4, -0.5) \][/tex]
### Summary of Transformations:
[tex]\[ \begin{array}{|c|c|c|} \hline \text{Reference Points} & \text{First Transformation} & \text{Second Transformation} \\ \hline (-1, -1) & (2, -1) & (2, 0.5) \\ \hline (0, 0) & (3, 0) & (3, 0) \\ \hline (1, 1) & (4, 1) & (4, -0.5) \\ \hline \end{array} \][/tex]
Thus, the transformed points on the graph of [tex]\( g(x) \)[/tex] are:
[tex]\[ (2, 0.5), (3, 0), (4, -0.5) \][/tex]
By graphing these points on the same coordinate plane, you can visualize how the graph of [tex]\( f(x) = x^3 \)[/tex] has been transformed to produce the graph of [tex]\( g(x) = -\frac{1}{2}(x-3)^3 \)[/tex].
We hope you found what you were looking for. Feel free to revisit us for more answers and updated information. We hope our answers were useful. Return anytime for more information and answers to any other questions you have. Discover more at Westonci.ca. Return for the latest expert answers and updates on various topics.