Westonci.ca is your go-to source for answers, with a community ready to provide accurate and timely information. Experience the convenience of finding accurate answers to your questions from knowledgeable professionals on our platform. Connect with a community of professionals ready to help you find accurate solutions to your questions quickly and efficiently.
Sagot :
Let's approach this problem step-by-step to find the correct expression for the volume of [tex]\( L \)[/tex] feet of drainage tubing with a radius of 2 inches.
1. Convert the radius from inches to feet:
- Given the radius [tex]\( r \)[/tex] is 2 inches.
- There are 12 inches in one foot.
- Therefore, the radius in feet is [tex]\(\frac{2}{12}\)[/tex] feet or [tex]\(\frac{1}{6}\)[/tex] feet.
2. Volume formula for a cylinder:
- The volume [tex]\( V \)[/tex] of a cylinder is given by [tex]\( V = \pi r^2 h \)[/tex], where [tex]\( r \)[/tex] is the radius and [tex]\( h \)[/tex] is the height or length of the cylinder.
3. Substitute the values:
- Here, the length [tex]\( h \)[/tex] of the tubing is [tex]\( L \)[/tex] feet.
- The radius [tex]\( r = \frac{1}{6} \)[/tex] feet.
So, the volume per foot [tex]\( V \)[/tex] can be calculated as:
[tex]\[ V = \pi \left(\frac{1}{6}\right)^2 \times L \][/tex]
4. Simplify the expression:
- [tex]\[ \left(\frac{1}{6}\right)^2 = \frac{1}{36} \][/tex]
- So,
[tex]\[ V = \pi \cdot \frac{1}{36} \cdot L \][/tex]
- [tex]\[ V = \frac{\pi}{36} \cdot L \][/tex]
5. Approximate the value of [tex]\(\frac{\pi}{36}\)[/tex]:
- [tex]\(\pi \approx 3.14159\)[/tex]
- [tex]\[ \frac{\pi}{36} \approx \frac{3.14159}{36} \approx 0.08726646259971647 \][/tex]
Therefore, the volume [tex]\( V \)[/tex] of [tex]\( L \)[/tex] feet of drainage tubing, in cubic feet, is approximately:
[tex]\[ V \approx 0.08726646259971647 \times L \][/tex]
6. Identify the closest expression:
- Among the provided options, 0.08726646259971647 is very close to Option A: [tex]\( 0.09 \times L \)[/tex].
Thus, the expression that represents the volume of [tex]\( L \)[/tex] feet of drainage tubing, in cubic feet, is:
[tex]\[ \boxed{0.09 L} \][/tex]
1. Convert the radius from inches to feet:
- Given the radius [tex]\( r \)[/tex] is 2 inches.
- There are 12 inches in one foot.
- Therefore, the radius in feet is [tex]\(\frac{2}{12}\)[/tex] feet or [tex]\(\frac{1}{6}\)[/tex] feet.
2. Volume formula for a cylinder:
- The volume [tex]\( V \)[/tex] of a cylinder is given by [tex]\( V = \pi r^2 h \)[/tex], where [tex]\( r \)[/tex] is the radius and [tex]\( h \)[/tex] is the height or length of the cylinder.
3. Substitute the values:
- Here, the length [tex]\( h \)[/tex] of the tubing is [tex]\( L \)[/tex] feet.
- The radius [tex]\( r = \frac{1}{6} \)[/tex] feet.
So, the volume per foot [tex]\( V \)[/tex] can be calculated as:
[tex]\[ V = \pi \left(\frac{1}{6}\right)^2 \times L \][/tex]
4. Simplify the expression:
- [tex]\[ \left(\frac{1}{6}\right)^2 = \frac{1}{36} \][/tex]
- So,
[tex]\[ V = \pi \cdot \frac{1}{36} \cdot L \][/tex]
- [tex]\[ V = \frac{\pi}{36} \cdot L \][/tex]
5. Approximate the value of [tex]\(\frac{\pi}{36}\)[/tex]:
- [tex]\(\pi \approx 3.14159\)[/tex]
- [tex]\[ \frac{\pi}{36} \approx \frac{3.14159}{36} \approx 0.08726646259971647 \][/tex]
Therefore, the volume [tex]\( V \)[/tex] of [tex]\( L \)[/tex] feet of drainage tubing, in cubic feet, is approximately:
[tex]\[ V \approx 0.08726646259971647 \times L \][/tex]
6. Identify the closest expression:
- Among the provided options, 0.08726646259971647 is very close to Option A: [tex]\( 0.09 \times L \)[/tex].
Thus, the expression that represents the volume of [tex]\( L \)[/tex] feet of drainage tubing, in cubic feet, is:
[tex]\[ \boxed{0.09 L} \][/tex]
We hope you found this helpful. Feel free to come back anytime for more accurate answers and updated information. We hope you found this helpful. Feel free to come back anytime for more accurate answers and updated information. Westonci.ca is committed to providing accurate answers. Come back soon for more trustworthy information.