Welcome to Westonci.ca, your go-to destination for finding answers to all your questions. Join our expert community today! Our platform provides a seamless experience for finding reliable answers from a knowledgeable network of professionals. Get precise and detailed answers to your questions from a knowledgeable community of experts on our Q&A platform.
Sagot :
Let's work through the factorization of each expression step-by-step.
### Part (a): Factorize [tex]\(6a + 9ab\)[/tex]
1. Identify the common factors:
Both terms in the expression [tex]\(6a\)[/tex] and [tex]\(9ab\)[/tex] have a common factor of [tex]\(3a\)[/tex].
2. Factor out the common factor [tex]\(3a\)[/tex]:
- [tex]\(6a \div 3a = 2\)[/tex]
- [tex]\(9ab \div 3a = 3b\)[/tex]
3. Rewrite the expression using the factored form:
[tex]\[ 6a + 9ab = 3a(2 + 3b) \][/tex]
Thus, the factorized form of [tex]\(6a + 9ab\)[/tex] is:
[tex]\[ \boxed{3a(2 + 3b)} \][/tex]
### Part (b): Factorize [tex]\(32xy - 12x^2z\)[/tex]
1. Identify the common factors:
Both terms in the expression [tex]\(32xy\)[/tex] and [tex]\(12x^2z\)[/tex] have a common factor of [tex]\(4x\)[/tex].
2. Factor out the common factor [tex]\(4x\)[/tex]:
- [tex]\(32xy \div 4x = 8y\)[/tex]
- [tex]\(12x^2z \div 4x = 3xz\)[/tex]
3. Rewrite the expression using the factored form:
[tex]\[ 32xy - 12x^2z = 4x(8y - 3xz) \][/tex]
Thus, the factorized form of [tex]\(32xy - 12x^2z\)[/tex] is:
[tex]\[ \boxed{4x(8y - 3xz)} \][/tex]
These factorized expressions are the solutions to the given problems.
### Part (a): Factorize [tex]\(6a + 9ab\)[/tex]
1. Identify the common factors:
Both terms in the expression [tex]\(6a\)[/tex] and [tex]\(9ab\)[/tex] have a common factor of [tex]\(3a\)[/tex].
2. Factor out the common factor [tex]\(3a\)[/tex]:
- [tex]\(6a \div 3a = 2\)[/tex]
- [tex]\(9ab \div 3a = 3b\)[/tex]
3. Rewrite the expression using the factored form:
[tex]\[ 6a + 9ab = 3a(2 + 3b) \][/tex]
Thus, the factorized form of [tex]\(6a + 9ab\)[/tex] is:
[tex]\[ \boxed{3a(2 + 3b)} \][/tex]
### Part (b): Factorize [tex]\(32xy - 12x^2z\)[/tex]
1. Identify the common factors:
Both terms in the expression [tex]\(32xy\)[/tex] and [tex]\(12x^2z\)[/tex] have a common factor of [tex]\(4x\)[/tex].
2. Factor out the common factor [tex]\(4x\)[/tex]:
- [tex]\(32xy \div 4x = 8y\)[/tex]
- [tex]\(12x^2z \div 4x = 3xz\)[/tex]
3. Rewrite the expression using the factored form:
[tex]\[ 32xy - 12x^2z = 4x(8y - 3xz) \][/tex]
Thus, the factorized form of [tex]\(32xy - 12x^2z\)[/tex] is:
[tex]\[ \boxed{4x(8y - 3xz)} \][/tex]
These factorized expressions are the solutions to the given problems.
Thank you for your visit. We're dedicated to helping you find the information you need, whenever you need it. Thank you for visiting. Our goal is to provide the most accurate answers for all your informational needs. Come back soon. Stay curious and keep coming back to Westonci.ca for answers to all your burning questions.