Westonci.ca is the ultimate Q&A platform, offering detailed and reliable answers from a knowledgeable community. Get accurate and detailed answers to your questions from a dedicated community of experts on our Q&A platform. Get quick and reliable solutions to your questions from a community of experienced experts on our platform.
Sagot :
To determine which polynomials are in standard form, we need to understand what standard form means for a polynomial:
A polynomial is said to be in standard form if its terms are written in descending order of their degree. The degree of a term is determined by the exponent of the variable in that term.
Let's evaluate each option:
A. [tex]\(3z - 1\)[/tex]:
- The term [tex]\(3z\)[/tex] is [tex]\(z^1\)[/tex].
- The term [tex]\(-1\)[/tex] is [tex]\(z^0\)[/tex].
- The terms are in order of descending degrees: [tex]\(z^1\)[/tex] and [tex]\(z^0\)[/tex].
- Therefore, this polynomial is in standard form.
B. [tex]\(2 + 4x - 5x^2\)[/tex]:
- The term [tex]\(2\)[/tex] is [tex]\(x^0\)[/tex].
- The term [tex]\(4x\)[/tex] is [tex]\(x^1\)[/tex].
- The term [tex]\(-5x^2\)[/tex] is [tex]\(x^2\)[/tex].
- The terms are not in order of descending degrees; they should be ordered as [tex]\(-5x^2 + 4x + 2\)[/tex].
- Therefore, this polynomial is not in standard form.
C. [tex]\(-5p^5 + 2p^2 - 3p + 1\)[/tex]:
- The term [tex]\(-5p^5\)[/tex] is [tex]\(p^5\)[/tex].
- The term [tex]\(2p^2\)[/tex] is [tex]\(p^2\)[/tex].
- The term [tex]\(-3p\)[/tex] is [tex]\(p^1\)[/tex].
- The term [tex]\(1\)[/tex] is [tex]\(p^0\)[/tex].
- The terms are in order of descending degrees: [tex]\(p^5, p^2, p^1,\)[/tex] and [tex]\(p^0\)[/tex].
- Therefore, this polynomial is in standard form.
D. None of the above:
- This option is not correct because there are valid polynomials in standard form in options A and C.
So, the polynomials that are in standard form are:
- Option A: [tex]\(3z - 1\)[/tex]
- Option C: [tex]\(-5p^5 + 2p^2 - 3p + 1\)[/tex]
Thus, the correct answers are:
A. [tex]\(3z - 1\)[/tex]
C. [tex]\(-5p^5 + 2p^2 - 3p + 1\)[/tex]
Therefore, the answer is:
1, 3
A polynomial is said to be in standard form if its terms are written in descending order of their degree. The degree of a term is determined by the exponent of the variable in that term.
Let's evaluate each option:
A. [tex]\(3z - 1\)[/tex]:
- The term [tex]\(3z\)[/tex] is [tex]\(z^1\)[/tex].
- The term [tex]\(-1\)[/tex] is [tex]\(z^0\)[/tex].
- The terms are in order of descending degrees: [tex]\(z^1\)[/tex] and [tex]\(z^0\)[/tex].
- Therefore, this polynomial is in standard form.
B. [tex]\(2 + 4x - 5x^2\)[/tex]:
- The term [tex]\(2\)[/tex] is [tex]\(x^0\)[/tex].
- The term [tex]\(4x\)[/tex] is [tex]\(x^1\)[/tex].
- The term [tex]\(-5x^2\)[/tex] is [tex]\(x^2\)[/tex].
- The terms are not in order of descending degrees; they should be ordered as [tex]\(-5x^2 + 4x + 2\)[/tex].
- Therefore, this polynomial is not in standard form.
C. [tex]\(-5p^5 + 2p^2 - 3p + 1\)[/tex]:
- The term [tex]\(-5p^5\)[/tex] is [tex]\(p^5\)[/tex].
- The term [tex]\(2p^2\)[/tex] is [tex]\(p^2\)[/tex].
- The term [tex]\(-3p\)[/tex] is [tex]\(p^1\)[/tex].
- The term [tex]\(1\)[/tex] is [tex]\(p^0\)[/tex].
- The terms are in order of descending degrees: [tex]\(p^5, p^2, p^1,\)[/tex] and [tex]\(p^0\)[/tex].
- Therefore, this polynomial is in standard form.
D. None of the above:
- This option is not correct because there are valid polynomials in standard form in options A and C.
So, the polynomials that are in standard form are:
- Option A: [tex]\(3z - 1\)[/tex]
- Option C: [tex]\(-5p^5 + 2p^2 - 3p + 1\)[/tex]
Thus, the correct answers are:
A. [tex]\(3z - 1\)[/tex]
C. [tex]\(-5p^5 + 2p^2 - 3p + 1\)[/tex]
Therefore, the answer is:
1, 3
Thanks for stopping by. We are committed to providing the best answers for all your questions. See you again soon. Thank you for choosing our platform. We're dedicated to providing the best answers for all your questions. Visit us again. Thank you for trusting Westonci.ca. Don't forget to revisit us for more accurate and insightful answers.