Welcome to Westonci.ca, where curiosity meets expertise. Ask any question and receive fast, accurate answers from our knowledgeable community. Join our platform to get reliable answers to your questions from a knowledgeable community of experts. Discover in-depth answers to your questions from a wide network of professionals on our user-friendly Q&A platform.
Sagot :
To determine when [tex]\(\tan \theta\)[/tex] is undefined on the unit circle within the interval [tex]\(0 < \theta \leq 2\pi\)[/tex], we need to consider the definition of the tangent function in terms of sine and cosine:
[tex]\[ \tan \theta = \frac{\sin \theta}{\cos \theta} \][/tex]
The tangent function is undefined wherever the denominator [tex]\(\cos \theta\)[/tex] is zero, because division by zero is undefined. Therefore, we need to find the values of [tex]\(\theta\)[/tex] where [tex]\(\cos \theta = 0\)[/tex].
The cosine function is zero at specific points within one full cycle of the unit circle. These points occur at:
[tex]\[ \theta = \frac{\pi}{2} \quad \text{and} \quad \theta = \frac{3\pi}{2} \][/tex]
Thus, the values of [tex]\(\theta\)[/tex] at which [tex]\(\tan \theta\)[/tex] is undefined are:
[tex]\[ \theta = \frac{\pi}{2} \quad \text{and} \quad \theta = \frac{3\pi}{2} \][/tex]
Hence, the correct choice is:
[tex]\[ \theta = \frac{\pi}{2} \text{ and } \theta = \frac{3\pi}{2} \][/tex]
[tex]\[ \tan \theta = \frac{\sin \theta}{\cos \theta} \][/tex]
The tangent function is undefined wherever the denominator [tex]\(\cos \theta\)[/tex] is zero, because division by zero is undefined. Therefore, we need to find the values of [tex]\(\theta\)[/tex] where [tex]\(\cos \theta = 0\)[/tex].
The cosine function is zero at specific points within one full cycle of the unit circle. These points occur at:
[tex]\[ \theta = \frac{\pi}{2} \quad \text{and} \quad \theta = \frac{3\pi}{2} \][/tex]
Thus, the values of [tex]\(\theta\)[/tex] at which [tex]\(\tan \theta\)[/tex] is undefined are:
[tex]\[ \theta = \frac{\pi}{2} \quad \text{and} \quad \theta = \frac{3\pi}{2} \][/tex]
Hence, the correct choice is:
[tex]\[ \theta = \frac{\pi}{2} \text{ and } \theta = \frac{3\pi}{2} \][/tex]
Thank you for your visit. We're dedicated to helping you find the information you need, whenever you need it. Thank you for visiting. Our goal is to provide the most accurate answers for all your informational needs. Come back soon. Westonci.ca is committed to providing accurate answers. Come back soon for more trustworthy information.