Explore Westonci.ca, the premier Q&A site that helps you find precise answers to your questions, no matter the topic. Get immediate answers to your questions from a wide network of experienced professionals on our Q&A platform. Experience the ease of finding precise answers to your questions from a knowledgeable community of experts.
Sagot :
To determine the volume of metal needed to make the cylindrical metal pipe, we can follow these steps:
1. Calculate the Volume of the Outer Cylinder:
The formula for the volume of a cylinder is:
[tex]\[ V = \pi r^2 h \][/tex]
where [tex]\( r \)[/tex] is the radius and [tex]\( h \)[/tex] is the height.
- The diameter of the outer cylinder is 20 millimeters, so the radius [tex]\( r_{\text{outer}} \)[/tex] is half of that:
[tex]\[ r_{\text{outer}} = \frac{20}{2} = 10 \text{ millimeters} \][/tex]
- The height [tex]\( h \)[/tex] of the cylinder is 21 millimeters.
Plugging these values into the formula for volume:
[tex]\[ V_{\text{outer}} = \pi (10)^2 (21) = 2100 \pi \text{ cubic millimeters} \][/tex]
2. Calculate the Volume of the Inner Hole:
- The radius [tex]\( r_{\text{inner}} \)[/tex] of the inner hole is 6 millimeters.
- The height [tex]\( h \)[/tex] remains 21 millimeters.
Using the volume formula:
[tex]\[ V_{\text{inner}} = \pi (6)^2 (21) = 21 \pi (36) = 756 \pi \text{ cubic millimeters} \][/tex]
3. Calculate the Volume of the Metal Needed:
The volume of metal needed is the volume of the outer cylinder minus the volume of the inner hole:
[tex]\[ V_{\text{metal}} = V_{\text{outer}} - V_{\text{inner}} = 2100 \pi - 756 \pi = (2100 - 756) \pi = 1344 \pi \text{ cubic millimeters} \][/tex]
Based on the explanation above, the volume of metal needed to make the pipe is represented by the following expressions:
- [tex]\( 21 \pi (10)^2 - 21 \pi (6)^2 \)[/tex]
- [tex]\( 2100 \pi - 756 \pi \)[/tex]
These expressions correctly represent the calculations performed to find the volume of metal.
The correct options are:
1. [tex]\( 21 \pi (10)^2 - 21 \pi (6)^2 \)[/tex]
2. [tex]\( 2100 \pi - 756 \pi \)[/tex]
1. Calculate the Volume of the Outer Cylinder:
The formula for the volume of a cylinder is:
[tex]\[ V = \pi r^2 h \][/tex]
where [tex]\( r \)[/tex] is the radius and [tex]\( h \)[/tex] is the height.
- The diameter of the outer cylinder is 20 millimeters, so the radius [tex]\( r_{\text{outer}} \)[/tex] is half of that:
[tex]\[ r_{\text{outer}} = \frac{20}{2} = 10 \text{ millimeters} \][/tex]
- The height [tex]\( h \)[/tex] of the cylinder is 21 millimeters.
Plugging these values into the formula for volume:
[tex]\[ V_{\text{outer}} = \pi (10)^2 (21) = 2100 \pi \text{ cubic millimeters} \][/tex]
2. Calculate the Volume of the Inner Hole:
- The radius [tex]\( r_{\text{inner}} \)[/tex] of the inner hole is 6 millimeters.
- The height [tex]\( h \)[/tex] remains 21 millimeters.
Using the volume formula:
[tex]\[ V_{\text{inner}} = \pi (6)^2 (21) = 21 \pi (36) = 756 \pi \text{ cubic millimeters} \][/tex]
3. Calculate the Volume of the Metal Needed:
The volume of metal needed is the volume of the outer cylinder minus the volume of the inner hole:
[tex]\[ V_{\text{metal}} = V_{\text{outer}} - V_{\text{inner}} = 2100 \pi - 756 \pi = (2100 - 756) \pi = 1344 \pi \text{ cubic millimeters} \][/tex]
Based on the explanation above, the volume of metal needed to make the pipe is represented by the following expressions:
- [tex]\( 21 \pi (10)^2 - 21 \pi (6)^2 \)[/tex]
- [tex]\( 2100 \pi - 756 \pi \)[/tex]
These expressions correctly represent the calculations performed to find the volume of metal.
The correct options are:
1. [tex]\( 21 \pi (10)^2 - 21 \pi (6)^2 \)[/tex]
2. [tex]\( 2100 \pi - 756 \pi \)[/tex]
We appreciate your visit. Our platform is always here to offer accurate and reliable answers. Return anytime. We hope you found this helpful. Feel free to come back anytime for more accurate answers and updated information. We're here to help at Westonci.ca. Keep visiting for the best answers to your questions.