At Westonci.ca, we provide clear, reliable answers to all your questions. Join our vibrant community and get the solutions you need. Get immediate and reliable solutions to your questions from a community of experienced professionals on our platform. Connect with a community of professionals ready to help you find accurate solutions to your questions quickly and efficiently.

A cylindrical metal pipe has a diameter of 20 millimeters and a height of 21 millimeters. A cylindrical hole cut out of the center has a radius of 6 millimeters.

Which expressions represent the volume of metal needed, in cubic millimeters, to make the pipe? Select two options.

A. [tex]21 \pi(10)^2 - 21 \pi(6)^2[/tex]
B. [tex]\pi(20)^2(21) - \pi(6)^2[/tex]
C. [tex]2,100 \pi - 756 \pi[/tex]
D. [tex]7,644 \pi[/tex]
E. [tex]1,344[/tex]

Sagot :

To determine the volume of metal needed to make the cylindrical metal pipe, we can follow these steps:

1. Calculate the Volume of the Outer Cylinder:

The formula for the volume of a cylinder is:
[tex]\[ V = \pi r^2 h \][/tex]
where [tex]\( r \)[/tex] is the radius and [tex]\( h \)[/tex] is the height.

- The diameter of the outer cylinder is 20 millimeters, so the radius [tex]\( r_{\text{outer}} \)[/tex] is half of that:
[tex]\[ r_{\text{outer}} = \frac{20}{2} = 10 \text{ millimeters} \][/tex]
- The height [tex]\( h \)[/tex] of the cylinder is 21 millimeters.

Plugging these values into the formula for volume:
[tex]\[ V_{\text{outer}} = \pi (10)^2 (21) = 2100 \pi \text{ cubic millimeters} \][/tex]

2. Calculate the Volume of the Inner Hole:

- The radius [tex]\( r_{\text{inner}} \)[/tex] of the inner hole is 6 millimeters.
- The height [tex]\( h \)[/tex] remains 21 millimeters.

Using the volume formula:
[tex]\[ V_{\text{inner}} = \pi (6)^2 (21) = 21 \pi (36) = 756 \pi \text{ cubic millimeters} \][/tex]

3. Calculate the Volume of the Metal Needed:

The volume of metal needed is the volume of the outer cylinder minus the volume of the inner hole:
[tex]\[ V_{\text{metal}} = V_{\text{outer}} - V_{\text{inner}} = 2100 \pi - 756 \pi = (2100 - 756) \pi = 1344 \pi \text{ cubic millimeters} \][/tex]

Based on the explanation above, the volume of metal needed to make the pipe is represented by the following expressions:

- [tex]\( 21 \pi (10)^2 - 21 \pi (6)^2 \)[/tex]
- [tex]\( 2100 \pi - 756 \pi \)[/tex]

These expressions correctly represent the calculations performed to find the volume of metal.

The correct options are:

1. [tex]\( 21 \pi (10)^2 - 21 \pi (6)^2 \)[/tex]
2. [tex]\( 2100 \pi - 756 \pi \)[/tex]
Thank you for your visit. We're dedicated to helping you find the information you need, whenever you need it. We appreciate your visit. Our platform is always here to offer accurate and reliable answers. Return anytime. Westonci.ca is here to provide the answers you seek. Return often for more expert solutions.