Answered

Discover the answers you need at Westonci.ca, a dynamic Q&A platform where knowledge is shared freely by a community of experts. Connect with a community of professionals ready to provide precise solutions to your questions quickly and accurately. Explore comprehensive solutions to your questions from knowledgeable professionals across various fields on our platform.

What is the domain of [tex]$f(x)=\left(\frac{1}{2}\right)^x$[/tex]?

A. [tex]x\ \textgreater \ 0[/tex]
B. [tex]x\ \textless \ 0[/tex]
C. [tex]y\ \textgreater \ 0[/tex]
D. All real numbers


Sagot :

To determine the domain of the function [tex]\( f(x) = \left( \frac{1}{2} \right)^x \)[/tex], we must identify the set of all possible values of [tex]\( x \)[/tex] for which the function is defined.

1. Analyzing the function form:
- The function [tex]\( f(x) = \left( \frac{1}{2} \right)^x \)[/tex] is an exponential function where the base is [tex]\( \frac{1}{2} \)[/tex].
- Exponential functions of the form [tex]\( a^x \)[/tex] (where [tex]\( a \)[/tex] is a positive constant) are defined for all real numbers [tex]\( x \)[/tex].

2. Understanding the base:
- The base [tex]\( \frac{1}{2} \)[/tex] is a positive number (since [tex]\( \frac{1}{2} > 0 \)[/tex]).
- There are no restrictions on the exponent [tex]\( x \)[/tex] in the function [tex]\( \left( \frac{1}{2} \right)^x \)[/tex].

3. Conclusion about the domain:
- Since [tex]\( \left( \frac{1}{2} \right)^x \)[/tex] is defined for any real number [tex]\( x \)[/tex], the domain of the function is all real numbers.

Therefore, the correct answer is:
[tex]\[ \boxed{\text{D. All real numbers}} \][/tex]