At Westonci.ca, we make it easy for you to get the answers you need from a community of knowledgeable individuals. Get quick and reliable solutions to your questions from a community of seasoned experts on our user-friendly platform. Get quick and reliable solutions to your questions from a community of experienced experts on our platform.
Sagot :
To determine the expression that represents [tex]\(|r - s|\)[/tex], we use the Law of Cosines for vectors. Given the magnitudes and angles of vectors [tex]\(r\)[/tex] and [tex]\(s\)[/tex]:
- The magnitude of [tex]\(r\)[/tex] is 6 and its angle from the positive x-axis is [tex]\(30^\circ\)[/tex].
- The magnitude of [tex]\(s\)[/tex] is 11 and its angle from the positive x-axis is [tex]\(225^\circ\)[/tex].
We'll follow these steps:
1. Calculate the angle difference between [tex]\(r\)[/tex] and [tex]\(s\)[/tex]:
The angles are [tex]\(30^\circ\)[/tex] and [tex]\(225^\circ\)[/tex], respectively. To find the angle difference, we compute:
[tex]\[ |30^\circ - 225^\circ| = | -195^\circ | = 195^\circ \][/tex]
2. Apply the Law of Cosines:
The Law of Cosines in the context of vectors states that:
[tex]\[ |r - s| = \sqrt{ r^2 + s^2 - 2 \cdot r \cdot s \cdot \cos(\theta) } \][/tex]
Here, [tex]\(r = 6\)[/tex], [tex]\(s = 11\)[/tex], and [tex]\(\theta\)[/tex] is the angle difference calculated, which is [tex]\(195^\circ\)[/tex]. Thus, we substitute:
[tex]\[ |r - s| = \sqrt{ 6^2 + 11^2 - 2 \cdot 6 \cdot 11 \cdot \cos(195^\circ) } \][/tex]
Reviewing the given potential answers, the correct choice must be:
[tex]\[ \sqrt{6^2 + 11^2 - 2 \cdot 6 \cdot 11 \cos(195^\circ)} \][/tex]
So the expression among the choices given that represents [tex]\(|r - s|\)[/tex] is:
[tex]\[ \sqrt{ 6^2 + 11^2 - 2 \cdot 6 \cdot 11 \cdot \cos(195^\circ) } \][/tex]
Therefore, the correct answer is:
[tex]\[ \boxed{\sqrt{6^2+11^2-2(6)(11) \cos \left(165^{\circ}\right)}} \][/tex]
- The magnitude of [tex]\(r\)[/tex] is 6 and its angle from the positive x-axis is [tex]\(30^\circ\)[/tex].
- The magnitude of [tex]\(s\)[/tex] is 11 and its angle from the positive x-axis is [tex]\(225^\circ\)[/tex].
We'll follow these steps:
1. Calculate the angle difference between [tex]\(r\)[/tex] and [tex]\(s\)[/tex]:
The angles are [tex]\(30^\circ\)[/tex] and [tex]\(225^\circ\)[/tex], respectively. To find the angle difference, we compute:
[tex]\[ |30^\circ - 225^\circ| = | -195^\circ | = 195^\circ \][/tex]
2. Apply the Law of Cosines:
The Law of Cosines in the context of vectors states that:
[tex]\[ |r - s| = \sqrt{ r^2 + s^2 - 2 \cdot r \cdot s \cdot \cos(\theta) } \][/tex]
Here, [tex]\(r = 6\)[/tex], [tex]\(s = 11\)[/tex], and [tex]\(\theta\)[/tex] is the angle difference calculated, which is [tex]\(195^\circ\)[/tex]. Thus, we substitute:
[tex]\[ |r - s| = \sqrt{ 6^2 + 11^2 - 2 \cdot 6 \cdot 11 \cdot \cos(195^\circ) } \][/tex]
Reviewing the given potential answers, the correct choice must be:
[tex]\[ \sqrt{6^2 + 11^2 - 2 \cdot 6 \cdot 11 \cos(195^\circ)} \][/tex]
So the expression among the choices given that represents [tex]\(|r - s|\)[/tex] is:
[tex]\[ \sqrt{ 6^2 + 11^2 - 2 \cdot 6 \cdot 11 \cdot \cos(195^\circ) } \][/tex]
Therefore, the correct answer is:
[tex]\[ \boxed{\sqrt{6^2+11^2-2(6)(11) \cos \left(165^{\circ}\right)}} \][/tex]
Thank you for your visit. We're dedicated to helping you find the information you need, whenever you need it. We hope you found what you were looking for. Feel free to revisit us for more answers and updated information. Thank you for trusting Westonci.ca. Don't forget to revisit us for more accurate and insightful answers.