Explore Westonci.ca, the premier Q&A site that helps you find precise answers to your questions, no matter the topic. Discover comprehensive answers to your questions from knowledgeable professionals on our user-friendly platform. Discover in-depth answers to your questions from a wide network of professionals on our user-friendly Q&A platform.
Sagot :
To determine which line is perpendicular to a given line with a slope of [tex]\(-\frac{1}{3}\)[/tex], we need to understand the relationship between the slopes of perpendicular lines. The key property is that the slopes of two perpendicular lines are negative reciprocals of each other.
Given slope:
[tex]\[ m_1 = -\frac{1}{3} \][/tex]
1. Find the negative reciprocal of [tex]\( m_1 \)[/tex]:
The reciprocal of [tex]\(-\frac{1}{3}\)[/tex] is [tex]\(-3\)[/tex] (since [tex]\(\frac{1}{-\frac{1}{3}} = -3\)[/tex]).
2. Take the negative of this reciprocal:
Negative reciprocal of [tex]\( -\frac{1}{3} \)[/tex] is:
[tex]\[ m_2 = -(-3) = 3 \][/tex]
Thus, the slope of a line that is perpendicular to a line with a slope of [tex]\(-\frac{1}{3}\)[/tex] is [tex]\(3\)[/tex].
Therefore, the line that is perpendicular to the line with a slope of [tex]\(-\frac{1}{3}\)[/tex] has a slope of [tex]\(3\)[/tex]. To choose the correct line (MN, AB, EF, or JK) for any real-world or problem-specific scenario, it is essential to know the individual slopes of these lines. Given only the problem's requirements and knowing the perpendicular slope must be [tex]\(3\)[/tex], you would confirm that the correct line is the one whose slope is [tex]\(3\)[/tex].
Given slope:
[tex]\[ m_1 = -\frac{1}{3} \][/tex]
1. Find the negative reciprocal of [tex]\( m_1 \)[/tex]:
The reciprocal of [tex]\(-\frac{1}{3}\)[/tex] is [tex]\(-3\)[/tex] (since [tex]\(\frac{1}{-\frac{1}{3}} = -3\)[/tex]).
2. Take the negative of this reciprocal:
Negative reciprocal of [tex]\( -\frac{1}{3} \)[/tex] is:
[tex]\[ m_2 = -(-3) = 3 \][/tex]
Thus, the slope of a line that is perpendicular to a line with a slope of [tex]\(-\frac{1}{3}\)[/tex] is [tex]\(3\)[/tex].
Therefore, the line that is perpendicular to the line with a slope of [tex]\(-\frac{1}{3}\)[/tex] has a slope of [tex]\(3\)[/tex]. To choose the correct line (MN, AB, EF, or JK) for any real-world or problem-specific scenario, it is essential to know the individual slopes of these lines. Given only the problem's requirements and knowing the perpendicular slope must be [tex]\(3\)[/tex], you would confirm that the correct line is the one whose slope is [tex]\(3\)[/tex].
Thank you for your visit. We're dedicated to helping you find the information you need, whenever you need it. We hope you found what you were looking for. Feel free to revisit us for more answers and updated information. Thank you for visiting Westonci.ca, your go-to source for reliable answers. Come back soon for more expert insights.