Discover answers to your questions with Westonci.ca, the leading Q&A platform that connects you with knowledgeable experts. Ask your questions and receive accurate answers from professionals with extensive experience in various fields on our platform. Get quick and reliable solutions to your questions from a community of experienced experts on our platform.
Sagot :
When analyzing how the graph of the function [tex]\( f(x) = 10(2)^x \)[/tex] changes if the base [tex]\( b \)[/tex] is decreased but remains greater than 1, we note the following points:
1. The graph will begin at a lower point on the [tex]\( y \)[/tex]-axis:
- False. The initial point of the graph, [tex]\( f(0) = 10 \cdot (2)^0 = 10 \)[/tex], remains unchanged regardless of the value of [tex]\( b \)[/tex]. This is because any number raised to the power of 0 is 1, and hence multiplying it by 10 gives the same starting point. The initial [tex]\( y \)[/tex]-value only depends on the coefficient, which remains 10.
2. The graph will increase at a faster rate:
- False. If [tex]\( b \)[/tex] is decreased but still greater than 1, the rate at which the function grows becomes slower. This is because the exponential growth factor is less than it was when [tex]\( b \)[/tex] was 2.
3. The graph will increase at a slower rate:
- True. As [tex]\( b \)[/tex] decreases while remaining greater than 1, the rate of exponential growth decreases. This means the graph will rise more gradually compared to when the base was 2.
4. The [tex]\( y \)[/tex]-values will continue to increase as [tex]\( x \)[/tex]-increases:
- True. Since [tex]\( b \)[/tex] is still greater than 1, [tex]\( b^x \)[/tex] will continue to increase as [tex]\( x \)[/tex] increases. Thus, [tex]\( f(x) \)[/tex] will still rise as [tex]\( x \)[/tex] becomes larger, ensuring that the [tex]\( y \)[/tex]-values increase.
5. The [tex]\( y \)[/tex]-values will each be less than their corresponding [tex]\( x \)[/tex]-values:
- False. For an exponential function [tex]\( f(x) = 10 \cdot b^x \)[/tex], the [tex]\( y \)[/tex]-values grow exponentially. Even with a smaller base [tex]\( b \)[/tex] (greater than 1), [tex]\( y \)[/tex]-values are typically much larger than their corresponding [tex]\( x \)[/tex]-values, especially as [tex]\( x \)[/tex] increases.
Therefore, the correct statements are:
- The graph will increase at a slower rate.
- The [tex]\( y \)[/tex]-values will continue to increase as [tex]\( x \)[/tex]-increases.
Thus, we check statements 3 and 4.
1. The graph will begin at a lower point on the [tex]\( y \)[/tex]-axis:
- False. The initial point of the graph, [tex]\( f(0) = 10 \cdot (2)^0 = 10 \)[/tex], remains unchanged regardless of the value of [tex]\( b \)[/tex]. This is because any number raised to the power of 0 is 1, and hence multiplying it by 10 gives the same starting point. The initial [tex]\( y \)[/tex]-value only depends on the coefficient, which remains 10.
2. The graph will increase at a faster rate:
- False. If [tex]\( b \)[/tex] is decreased but still greater than 1, the rate at which the function grows becomes slower. This is because the exponential growth factor is less than it was when [tex]\( b \)[/tex] was 2.
3. The graph will increase at a slower rate:
- True. As [tex]\( b \)[/tex] decreases while remaining greater than 1, the rate of exponential growth decreases. This means the graph will rise more gradually compared to when the base was 2.
4. The [tex]\( y \)[/tex]-values will continue to increase as [tex]\( x \)[/tex]-increases:
- True. Since [tex]\( b \)[/tex] is still greater than 1, [tex]\( b^x \)[/tex] will continue to increase as [tex]\( x \)[/tex] increases. Thus, [tex]\( f(x) \)[/tex] will still rise as [tex]\( x \)[/tex] becomes larger, ensuring that the [tex]\( y \)[/tex]-values increase.
5. The [tex]\( y \)[/tex]-values will each be less than their corresponding [tex]\( x \)[/tex]-values:
- False. For an exponential function [tex]\( f(x) = 10 \cdot b^x \)[/tex], the [tex]\( y \)[/tex]-values grow exponentially. Even with a smaller base [tex]\( b \)[/tex] (greater than 1), [tex]\( y \)[/tex]-values are typically much larger than their corresponding [tex]\( x \)[/tex]-values, especially as [tex]\( x \)[/tex] increases.
Therefore, the correct statements are:
- The graph will increase at a slower rate.
- The [tex]\( y \)[/tex]-values will continue to increase as [tex]\( x \)[/tex]-increases.
Thus, we check statements 3 and 4.
Thanks for using our service. We're always here to provide accurate and up-to-date answers to all your queries. Thanks for stopping by. We strive to provide the best answers for all your questions. See you again soon. Thank you for visiting Westonci.ca, your go-to source for reliable answers. Come back soon for more expert insights.