At Westonci.ca, we connect you with experts who provide detailed answers to your most pressing questions. Start exploring now! Experience the ease of finding quick and accurate answers to your questions from professionals on our platform. Our platform offers a seamless experience for finding reliable answers from a network of knowledgeable professionals.
Sagot :
To find the linear approximation of the function [tex]\( f(x) = \sqrt{x} \)[/tex] at [tex]\( c = 9 \)[/tex], follow these steps:
1. Evaluate the function at [tex]\( c = 9 \)[/tex]:
[tex]\[ f(9) = \sqrt{9} = 3.0 \][/tex]
2. Find the derivative of the function [tex]\( f(x) = \sqrt{x} \)[/tex]:
To do this, we use the power rule for differentiation.
[tex]\[ f(x) = x^{1/2} \][/tex]
The derivative is:
[tex]\[ f'(x) = \frac{1}{2} x^{-\frac{1}{2}} = \frac{1}{2\sqrt{x}} \][/tex]
3. Evaluate the derivative at [tex]\( c = 9 \)[/tex]:
[tex]\[ f'(9) = \frac{1}{2\sqrt{9}} = \frac{1}{2 \times 3} = \frac{1}{6} \approx 0.1667 \][/tex]
4. Form the linear approximation formula:
The linear approximation of a function at a point [tex]\( c \)[/tex] is given by:
[tex]\[ L(x) = f(c) + f'(c)(x - c) \][/tex]
Substituting the values we found for [tex]\( f(9) \)[/tex] and [tex]\( f'(9) \)[/tex]:
[tex]\[ L(x) = 3.0 + 0.1667(x - 9) \][/tex]
Therefore, the linear approximation of [tex]\( f(x) = \sqrt{x} \)[/tex] at [tex]\( c = 9 \)[/tex] is:
[tex]\[ L(x) = 3.0 + 0.1667(x - 9) \][/tex]
1. Evaluate the function at [tex]\( c = 9 \)[/tex]:
[tex]\[ f(9) = \sqrt{9} = 3.0 \][/tex]
2. Find the derivative of the function [tex]\( f(x) = \sqrt{x} \)[/tex]:
To do this, we use the power rule for differentiation.
[tex]\[ f(x) = x^{1/2} \][/tex]
The derivative is:
[tex]\[ f'(x) = \frac{1}{2} x^{-\frac{1}{2}} = \frac{1}{2\sqrt{x}} \][/tex]
3. Evaluate the derivative at [tex]\( c = 9 \)[/tex]:
[tex]\[ f'(9) = \frac{1}{2\sqrt{9}} = \frac{1}{2 \times 3} = \frac{1}{6} \approx 0.1667 \][/tex]
4. Form the linear approximation formula:
The linear approximation of a function at a point [tex]\( c \)[/tex] is given by:
[tex]\[ L(x) = f(c) + f'(c)(x - c) \][/tex]
Substituting the values we found for [tex]\( f(9) \)[/tex] and [tex]\( f'(9) \)[/tex]:
[tex]\[ L(x) = 3.0 + 0.1667(x - 9) \][/tex]
Therefore, the linear approximation of [tex]\( f(x) = \sqrt{x} \)[/tex] at [tex]\( c = 9 \)[/tex] is:
[tex]\[ L(x) = 3.0 + 0.1667(x - 9) \][/tex]
Your visit means a lot to us. Don't hesitate to return for more reliable answers to any questions you may have. Thanks for using our service. We're always here to provide accurate and up-to-date answers to all your queries. Westonci.ca is here to provide the answers you seek. Return often for more expert solutions.