Discover answers to your most pressing questions at Westonci.ca, the ultimate Q&A platform that connects you with expert solutions. Find reliable answers to your questions from a wide community of knowledgeable experts on our user-friendly Q&A platform. Get precise and detailed answers to your questions from a knowledgeable community of experts on our Q&A platform.
Sagot :
To find the linear approximation of the function [tex]\( f(x) = \sqrt{x} \)[/tex] at [tex]\( c = 9 \)[/tex], follow these steps:
1. Evaluate the function at [tex]\( c = 9 \)[/tex]:
[tex]\[ f(9) = \sqrt{9} = 3.0 \][/tex]
2. Find the derivative of the function [tex]\( f(x) = \sqrt{x} \)[/tex]:
To do this, we use the power rule for differentiation.
[tex]\[ f(x) = x^{1/2} \][/tex]
The derivative is:
[tex]\[ f'(x) = \frac{1}{2} x^{-\frac{1}{2}} = \frac{1}{2\sqrt{x}} \][/tex]
3. Evaluate the derivative at [tex]\( c = 9 \)[/tex]:
[tex]\[ f'(9) = \frac{1}{2\sqrt{9}} = \frac{1}{2 \times 3} = \frac{1}{6} \approx 0.1667 \][/tex]
4. Form the linear approximation formula:
The linear approximation of a function at a point [tex]\( c \)[/tex] is given by:
[tex]\[ L(x) = f(c) + f'(c)(x - c) \][/tex]
Substituting the values we found for [tex]\( f(9) \)[/tex] and [tex]\( f'(9) \)[/tex]:
[tex]\[ L(x) = 3.0 + 0.1667(x - 9) \][/tex]
Therefore, the linear approximation of [tex]\( f(x) = \sqrt{x} \)[/tex] at [tex]\( c = 9 \)[/tex] is:
[tex]\[ L(x) = 3.0 + 0.1667(x - 9) \][/tex]
1. Evaluate the function at [tex]\( c = 9 \)[/tex]:
[tex]\[ f(9) = \sqrt{9} = 3.0 \][/tex]
2. Find the derivative of the function [tex]\( f(x) = \sqrt{x} \)[/tex]:
To do this, we use the power rule for differentiation.
[tex]\[ f(x) = x^{1/2} \][/tex]
The derivative is:
[tex]\[ f'(x) = \frac{1}{2} x^{-\frac{1}{2}} = \frac{1}{2\sqrt{x}} \][/tex]
3. Evaluate the derivative at [tex]\( c = 9 \)[/tex]:
[tex]\[ f'(9) = \frac{1}{2\sqrt{9}} = \frac{1}{2 \times 3} = \frac{1}{6} \approx 0.1667 \][/tex]
4. Form the linear approximation formula:
The linear approximation of a function at a point [tex]\( c \)[/tex] is given by:
[tex]\[ L(x) = f(c) + f'(c)(x - c) \][/tex]
Substituting the values we found for [tex]\( f(9) \)[/tex] and [tex]\( f'(9) \)[/tex]:
[tex]\[ L(x) = 3.0 + 0.1667(x - 9) \][/tex]
Therefore, the linear approximation of [tex]\( f(x) = \sqrt{x} \)[/tex] at [tex]\( c = 9 \)[/tex] is:
[tex]\[ L(x) = 3.0 + 0.1667(x - 9) \][/tex]
Thank you for choosing our platform. We're dedicated to providing the best answers for all your questions. Visit us again. We appreciate your visit. Our platform is always here to offer accurate and reliable answers. Return anytime. Keep exploring Westonci.ca for more insightful answers to your questions. We're here to help.