Discover answers to your questions with Westonci.ca, the leading Q&A platform that connects you with knowledgeable experts. Discover detailed answers to your questions from a wide network of experts on our comprehensive Q&A platform. Explore comprehensive solutions to your questions from knowledgeable professionals across various fields on our platform.
Sagot :
To solve the given mathematical expression [tex]\(\frac{-1}{3 t^3} + e^{5x} + 7\)[/tex], let's break it down step by step.
1. Identify the Components: The expression comprises three main parts:
- [tex]\(\frac{-1}{3 t^3}\)[/tex]
- [tex]\(e^{5x}\)[/tex]
- [tex]\(7\)[/tex]
2. Simplify Each Part:
- [tex]\(\frac{-1}{3 t^3}\)[/tex] represents the fraction [tex]\(\frac{1}{3 t^3}\)[/tex] with a negative sign. This term involves the variable [tex]\(t\)[/tex] raised to the power of 3 and then taken the reciprocal.
- [tex]\(e^{5x}\)[/tex] represents the exponential function with base [tex]\(e\)[/tex] (Euler's number) raised to the power of [tex]\(5x\)[/tex]. This term depends on the variable [tex]\(x\)[/tex].
- [tex]\(7\)[/tex] is a constant term.
3. Combine the Terms:
After simplifying individual parts, combine them back to form the complete expression:
[tex]\[ \frac{-1}{3 t^3} + e^{5x} + 7 \][/tex]
4. Re-express the Components:
To ensure the expression is clear and fully simplified, rewrite it as:
[tex]\[ -\frac{1}{3 t^3} + e^{5x} + 7 \][/tex]
5. Final Expression:
The combined and simplified answer to the expression is:
[tex]\[ e^{5x} + 7 - \frac{1}{3 t^3} \][/tex]
This is the fully simplified form of the given mathematical expression [tex]\(\frac{-1}{3 t^3} + e^{5 x} + 7\)[/tex].
1. Identify the Components: The expression comprises three main parts:
- [tex]\(\frac{-1}{3 t^3}\)[/tex]
- [tex]\(e^{5x}\)[/tex]
- [tex]\(7\)[/tex]
2. Simplify Each Part:
- [tex]\(\frac{-1}{3 t^3}\)[/tex] represents the fraction [tex]\(\frac{1}{3 t^3}\)[/tex] with a negative sign. This term involves the variable [tex]\(t\)[/tex] raised to the power of 3 and then taken the reciprocal.
- [tex]\(e^{5x}\)[/tex] represents the exponential function with base [tex]\(e\)[/tex] (Euler's number) raised to the power of [tex]\(5x\)[/tex]. This term depends on the variable [tex]\(x\)[/tex].
- [tex]\(7\)[/tex] is a constant term.
3. Combine the Terms:
After simplifying individual parts, combine them back to form the complete expression:
[tex]\[ \frac{-1}{3 t^3} + e^{5x} + 7 \][/tex]
4. Re-express the Components:
To ensure the expression is clear and fully simplified, rewrite it as:
[tex]\[ -\frac{1}{3 t^3} + e^{5x} + 7 \][/tex]
5. Final Expression:
The combined and simplified answer to the expression is:
[tex]\[ e^{5x} + 7 - \frac{1}{3 t^3} \][/tex]
This is the fully simplified form of the given mathematical expression [tex]\(\frac{-1}{3 t^3} + e^{5 x} + 7\)[/tex].
Visit us again for up-to-date and reliable answers. We're always ready to assist you with your informational needs. Thank you for your visit. We're dedicated to helping you find the information you need, whenever you need it. Thank you for trusting Westonci.ca. Don't forget to revisit us for more accurate and insightful answers.