Find the best solutions to your questions at Westonci.ca, the premier Q&A platform with a community of knowledgeable experts. Join our platform to connect with experts ready to provide detailed answers to your questions in various areas. Discover detailed answers to your questions from a wide network of experts on our comprehensive Q&A platform.
Sagot :
To determine whether the data represents a linear function or an exponential function, we need to analyze the Y-values corresponding to the given X-values in the table.
We are given the following pairs:
[tex]\[ (1, 4), (2, -5), (3, -14), (4, -23), (5, -32) \][/tex]
### Step 1: Calculate the Differences Between Successive Y-values
We will find the difference between each successive Y-value:
[tex]\[ \Delta y_1 = y_2 - y_1 = -5 - 4 = -9 \][/tex]
[tex]\[ \Delta y_2 = y_3 - y_2 = -14 - (-5) = -14 + 5 = -9 \][/tex]
[tex]\[ \Delta y_3 = y_4 - y_3 = -23 - (-14) = -23 + 14 = -9 \][/tex]
[tex]\[ \Delta y_4 = y_5 - y_4 = -32 - (-23) = -32 + 23 = -9 \][/tex]
### Step 2: Determine If the Differences Are Constant
If the differences between successive Y-values are constant, then the data represents a linear function. From the calculations above, we can see that:
[tex]\[ \Delta y_1 = -9 \][/tex]
[tex]\[ \Delta y_2 = -9 \][/tex]
[tex]\[ \Delta y_3 = -9 \][/tex]
[tex]\[ \Delta y_4 = -9 \][/tex]
The differences are constant and equal to [tex]\(-9\)[/tex].
### Step 3: Conclusion
A common difference of [tex]\(-9\)[/tex] indicates that the function is linear. Therefore, the correct answer is:
B. The data represent a linear function because there is a common difference of -9.
We are given the following pairs:
[tex]\[ (1, 4), (2, -5), (3, -14), (4, -23), (5, -32) \][/tex]
### Step 1: Calculate the Differences Between Successive Y-values
We will find the difference between each successive Y-value:
[tex]\[ \Delta y_1 = y_2 - y_1 = -5 - 4 = -9 \][/tex]
[tex]\[ \Delta y_2 = y_3 - y_2 = -14 - (-5) = -14 + 5 = -9 \][/tex]
[tex]\[ \Delta y_3 = y_4 - y_3 = -23 - (-14) = -23 + 14 = -9 \][/tex]
[tex]\[ \Delta y_4 = y_5 - y_4 = -32 - (-23) = -32 + 23 = -9 \][/tex]
### Step 2: Determine If the Differences Are Constant
If the differences between successive Y-values are constant, then the data represents a linear function. From the calculations above, we can see that:
[tex]\[ \Delta y_1 = -9 \][/tex]
[tex]\[ \Delta y_2 = -9 \][/tex]
[tex]\[ \Delta y_3 = -9 \][/tex]
[tex]\[ \Delta y_4 = -9 \][/tex]
The differences are constant and equal to [tex]\(-9\)[/tex].
### Step 3: Conclusion
A common difference of [tex]\(-9\)[/tex] indicates that the function is linear. Therefore, the correct answer is:
B. The data represent a linear function because there is a common difference of -9.
Thank you for your visit. We're committed to providing you with the best information available. Return anytime for more. We hope this was helpful. Please come back whenever you need more information or answers to your queries. Find reliable answers at Westonci.ca. Visit us again for the latest updates and expert advice.