Westonci.ca is the premier destination for reliable answers to your questions, brought to you by a community of experts. Get immediate answers to your questions from a wide network of experienced professionals on our Q&A platform. Get quick and reliable solutions to your questions from a community of experienced experts on our platform.
Sagot :
Certainly! Let's solve the problem step by step to find the magnitude of the electric field.
Step 1: Understanding the Problem
We have a charge of [tex]\(-2 \mu C\)[/tex] (microCoulombs) and it is placed at a distance of 0.5 meters. We need to calculate the magnitude of the electric field created by this charge at that distance.
Step 2: Converting Units
First, we need to convert the charge [tex]\(-2 \mu C\)[/tex] to Coulombs because 1 microCoulomb ([tex]\(\mu C\)[/tex]) is [tex]\(1 \times 10^{-6}\)[/tex] Coulombs (C).
[tex]\[ -2 \mu C = -2 \times 10^{-6} \text{ C} \][/tex]
Step 3: Using Coulomb's Law
Coulomb's law states that the magnitude of the electric field (E) created by a point charge (q) at a distance (r) is given by the formula:
[tex]\[ E = \frac{k \cdot |q|}{r^2} \][/tex]
where:
- [tex]\(k\)[/tex] is Coulomb's constant ([tex]\(8.99 \times 10^9 \, \text{N} \cdot \text{m}^2/\text{C}^2\)[/tex])
- [tex]\(|q|\)[/tex] is the absolute value of the charge
- [tex]\(r\)[/tex] is the distance from the charge
Step 4: Plugging in the Values
Given:
- [tex]\(|q| = 2 \times 10^{-6} \text{ C}\)[/tex] (the absolute value of [tex]\(-2 \mu C\)[/tex])
- [tex]\(r = 0.5 \text{ m}\)[/tex]
- [tex]\(k = 8.99 \times 10^9 \, \text{N} \cdot \text{m}^2/\text{C}^2\)[/tex]
Substitute these values into the formula:
[tex]\[ E = \frac{8.99 \times 10^9 \, \text{N} \cdot \text{m}^2/\text{C}^2 \cdot 2 \times 10^{-6} \text{ C}}{(0.5 \text{ m})^2} \][/tex]
Step 5: Simplifying the Calculation
Calculate the denominator first:
[tex]\[ (0.5 \text{ m})^2 = 0.25 \text{ m}^2 \][/tex]
Then the entire expression:
[tex]\[ E = \frac{8.99 \times 10^9 \cdot 2 \times 10^{-6}}{0.25} \][/tex]
[tex]\[ E = \frac{17.98 \times 10^3}{0.25} \][/tex]
Finally, divide:
[tex]\[ E = 71920 \, \text{N/C} \][/tex]
Therefore, the magnitude of the electric field is [tex]\(71,920 \, \text{N/C}\)[/tex].
Step 1: Understanding the Problem
We have a charge of [tex]\(-2 \mu C\)[/tex] (microCoulombs) and it is placed at a distance of 0.5 meters. We need to calculate the magnitude of the electric field created by this charge at that distance.
Step 2: Converting Units
First, we need to convert the charge [tex]\(-2 \mu C\)[/tex] to Coulombs because 1 microCoulomb ([tex]\(\mu C\)[/tex]) is [tex]\(1 \times 10^{-6}\)[/tex] Coulombs (C).
[tex]\[ -2 \mu C = -2 \times 10^{-6} \text{ C} \][/tex]
Step 3: Using Coulomb's Law
Coulomb's law states that the magnitude of the electric field (E) created by a point charge (q) at a distance (r) is given by the formula:
[tex]\[ E = \frac{k \cdot |q|}{r^2} \][/tex]
where:
- [tex]\(k\)[/tex] is Coulomb's constant ([tex]\(8.99 \times 10^9 \, \text{N} \cdot \text{m}^2/\text{C}^2\)[/tex])
- [tex]\(|q|\)[/tex] is the absolute value of the charge
- [tex]\(r\)[/tex] is the distance from the charge
Step 4: Plugging in the Values
Given:
- [tex]\(|q| = 2 \times 10^{-6} \text{ C}\)[/tex] (the absolute value of [tex]\(-2 \mu C\)[/tex])
- [tex]\(r = 0.5 \text{ m}\)[/tex]
- [tex]\(k = 8.99 \times 10^9 \, \text{N} \cdot \text{m}^2/\text{C}^2\)[/tex]
Substitute these values into the formula:
[tex]\[ E = \frac{8.99 \times 10^9 \, \text{N} \cdot \text{m}^2/\text{C}^2 \cdot 2 \times 10^{-6} \text{ C}}{(0.5 \text{ m})^2} \][/tex]
Step 5: Simplifying the Calculation
Calculate the denominator first:
[tex]\[ (0.5 \text{ m})^2 = 0.25 \text{ m}^2 \][/tex]
Then the entire expression:
[tex]\[ E = \frac{8.99 \times 10^9 \cdot 2 \times 10^{-6}}{0.25} \][/tex]
[tex]\[ E = \frac{17.98 \times 10^3}{0.25} \][/tex]
Finally, divide:
[tex]\[ E = 71920 \, \text{N/C} \][/tex]
Therefore, the magnitude of the electric field is [tex]\(71,920 \, \text{N/C}\)[/tex].
We hope this was helpful. Please come back whenever you need more information or answers to your queries. We appreciate your visit. Our platform is always here to offer accurate and reliable answers. Return anytime. Westonci.ca is here to provide the answers you seek. Return often for more expert solutions.