Discover a world of knowledge at Westonci.ca, where experts and enthusiasts come together to answer your questions. Get immediate and reliable solutions to your questions from a community of experienced experts on our Q&A platform. Experience the ease of finding precise answers to your questions from a knowledgeable community of experts.
Sagot :
Sure, let's solve the equation [tex]\( e^{0.4x} = 0.4 \)[/tex] step by step.
1. Understanding the Problem:
We need to solve for [tex]\( x \)[/tex] in the equation [tex]\( e^{0.4x} = 0.4 \)[/tex].
2. Taking Natural Logarithm:
To solve for [tex]\( x \)[/tex], we can take the natural logarithm (ln) of both sides of the equation. The natural logarithm has the property that [tex]\( \ln(e^y) = y \)[/tex].
[tex]\[ \ln(e^{0.4x}) = \ln(0.4) \][/tex]
3. Simplifying using Logarithm Properties:
Using the property [tex]\( \ln(e^y) = y \)[/tex], we simplify the left-hand side of the equation:
[tex]\[ 0.4x = \ln(0.4) \][/tex]
4. Solving for [tex]\( x \)[/tex]:
Now we need to isolate [tex]\( x \)[/tex] by dividing both sides of the equation by 0.4:
[tex]\[ x = \frac{\ln(0.4)}{0.4} \][/tex]
5. Calculating the Natural Logarithm and Division:
Evaluate [tex]\( \ln(0.4) \approx -0.916290731874155 \)[/tex]. Then perform the division:
[tex]\[ x = \frac{-0.916290731874155}{0.4} \approx -2.2907268296853873 \][/tex]
6. Rounding the Result:
Finally, round the result to two decimal places:
[tex]\[ x \approx -2.29 \][/tex]
Based on the above calculations and rounding, the solution to the equation [tex]\( e^{0.4x} = 0.4 \)[/tex] is approximately [tex]\( x = -2.29 \)[/tex].
So, the correct answer is:
D. [tex]\( x = -2.29 \)[/tex]
1. Understanding the Problem:
We need to solve for [tex]\( x \)[/tex] in the equation [tex]\( e^{0.4x} = 0.4 \)[/tex].
2. Taking Natural Logarithm:
To solve for [tex]\( x \)[/tex], we can take the natural logarithm (ln) of both sides of the equation. The natural logarithm has the property that [tex]\( \ln(e^y) = y \)[/tex].
[tex]\[ \ln(e^{0.4x}) = \ln(0.4) \][/tex]
3. Simplifying using Logarithm Properties:
Using the property [tex]\( \ln(e^y) = y \)[/tex], we simplify the left-hand side of the equation:
[tex]\[ 0.4x = \ln(0.4) \][/tex]
4. Solving for [tex]\( x \)[/tex]:
Now we need to isolate [tex]\( x \)[/tex] by dividing both sides of the equation by 0.4:
[tex]\[ x = \frac{\ln(0.4)}{0.4} \][/tex]
5. Calculating the Natural Logarithm and Division:
Evaluate [tex]\( \ln(0.4) \approx -0.916290731874155 \)[/tex]. Then perform the division:
[tex]\[ x = \frac{-0.916290731874155}{0.4} \approx -2.2907268296853873 \][/tex]
6. Rounding the Result:
Finally, round the result to two decimal places:
[tex]\[ x \approx -2.29 \][/tex]
Based on the above calculations and rounding, the solution to the equation [tex]\( e^{0.4x} = 0.4 \)[/tex] is approximately [tex]\( x = -2.29 \)[/tex].
So, the correct answer is:
D. [tex]\( x = -2.29 \)[/tex]
Thank you for trusting us with your questions. We're here to help you find accurate answers quickly and efficiently. Thanks for stopping by. We strive to provide the best answers for all your questions. See you again soon. Thank you for choosing Westonci.ca as your information source. We look forward to your next visit.