Westonci.ca is the best place to get answers to your questions, provided by a community of experienced and knowledgeable experts. Connect with a community of experts ready to provide precise solutions to your questions on our user-friendly Q&A platform. Discover detailed answers to your questions from a wide network of experts on our comprehensive Q&A platform.
Sagot :
Sure, let's solve the equation [tex]\( e^{0.4x} = 0.4 \)[/tex] step by step.
1. Understanding the Problem:
We need to solve for [tex]\( x \)[/tex] in the equation [tex]\( e^{0.4x} = 0.4 \)[/tex].
2. Taking Natural Logarithm:
To solve for [tex]\( x \)[/tex], we can take the natural logarithm (ln) of both sides of the equation. The natural logarithm has the property that [tex]\( \ln(e^y) = y \)[/tex].
[tex]\[ \ln(e^{0.4x}) = \ln(0.4) \][/tex]
3. Simplifying using Logarithm Properties:
Using the property [tex]\( \ln(e^y) = y \)[/tex], we simplify the left-hand side of the equation:
[tex]\[ 0.4x = \ln(0.4) \][/tex]
4. Solving for [tex]\( x \)[/tex]:
Now we need to isolate [tex]\( x \)[/tex] by dividing both sides of the equation by 0.4:
[tex]\[ x = \frac{\ln(0.4)}{0.4} \][/tex]
5. Calculating the Natural Logarithm and Division:
Evaluate [tex]\( \ln(0.4) \approx -0.916290731874155 \)[/tex]. Then perform the division:
[tex]\[ x = \frac{-0.916290731874155}{0.4} \approx -2.2907268296853873 \][/tex]
6. Rounding the Result:
Finally, round the result to two decimal places:
[tex]\[ x \approx -2.29 \][/tex]
Based on the above calculations and rounding, the solution to the equation [tex]\( e^{0.4x} = 0.4 \)[/tex] is approximately [tex]\( x = -2.29 \)[/tex].
So, the correct answer is:
D. [tex]\( x = -2.29 \)[/tex]
1. Understanding the Problem:
We need to solve for [tex]\( x \)[/tex] in the equation [tex]\( e^{0.4x} = 0.4 \)[/tex].
2. Taking Natural Logarithm:
To solve for [tex]\( x \)[/tex], we can take the natural logarithm (ln) of both sides of the equation. The natural logarithm has the property that [tex]\( \ln(e^y) = y \)[/tex].
[tex]\[ \ln(e^{0.4x}) = \ln(0.4) \][/tex]
3. Simplifying using Logarithm Properties:
Using the property [tex]\( \ln(e^y) = y \)[/tex], we simplify the left-hand side of the equation:
[tex]\[ 0.4x = \ln(0.4) \][/tex]
4. Solving for [tex]\( x \)[/tex]:
Now we need to isolate [tex]\( x \)[/tex] by dividing both sides of the equation by 0.4:
[tex]\[ x = \frac{\ln(0.4)}{0.4} \][/tex]
5. Calculating the Natural Logarithm and Division:
Evaluate [tex]\( \ln(0.4) \approx -0.916290731874155 \)[/tex]. Then perform the division:
[tex]\[ x = \frac{-0.916290731874155}{0.4} \approx -2.2907268296853873 \][/tex]
6. Rounding the Result:
Finally, round the result to two decimal places:
[tex]\[ x \approx -2.29 \][/tex]
Based on the above calculations and rounding, the solution to the equation [tex]\( e^{0.4x} = 0.4 \)[/tex] is approximately [tex]\( x = -2.29 \)[/tex].
So, the correct answer is:
D. [tex]\( x = -2.29 \)[/tex]
We appreciate your visit. Our platform is always here to offer accurate and reliable answers. Return anytime. Thank you for visiting. Our goal is to provide the most accurate answers for all your informational needs. Come back soon. Get the answers you need at Westonci.ca. Stay informed by returning for our latest expert advice.