At Westonci.ca, we make it easy to get the answers you need from a community of informed and experienced contributors. Get detailed and accurate answers to your questions from a dedicated community of experts on our Q&A platform. Get precise and detailed answers to your questions from a knowledgeable community of experts on our Q&A platform.
Sagot :
Let's carefully analyze the given equation [tex]\( |-x| = -10 \)[/tex].
1. Understanding the Absolute Value Function: The absolute value function, denoted as [tex]\(|a|\)[/tex], always outputs non-negative results. In mathematical terms, [tex]\(|a| \geq 0\)[/tex] for any real number [tex]\(a\)[/tex].
2. Applying Absolute Value to [tex]\(-x\)[/tex]: In our equation, the expression is [tex]\(|-x|\)[/tex]. Since the absolute value of any number is always non-negative, we have that [tex]\(|-x| \geq 0\)[/tex]. This means that for any value of [tex]\(x\)[/tex], [tex]\( |-x| \)[/tex] will always be a non-negative number (greater than or equal to 0).
3. Comparing with [tex]\(-10\)[/tex]: The equation states [tex]\( |-x| = -10 \)[/tex]. Here, [tex]\(-10\)[/tex] is a negative number. Since the left side of the equation (which is [tex]\(|-x|\)[/tex]) is always non-negative, it can never be equal to a negative number like [tex]\(-10\)[/tex].
4. Conclusion: Therefore, the equation [tex]\( |-x| = -10 \)[/tex] has no possible solutions. The non-negativity property of absolute values ensures that no value of [tex]\(x\)[/tex] will satisfy this equation.
Thus, the solution set of [tex]\( |-x| = -10 \)[/tex] is:
[tex]\[ \text{no solution} \][/tex]
1. Understanding the Absolute Value Function: The absolute value function, denoted as [tex]\(|a|\)[/tex], always outputs non-negative results. In mathematical terms, [tex]\(|a| \geq 0\)[/tex] for any real number [tex]\(a\)[/tex].
2. Applying Absolute Value to [tex]\(-x\)[/tex]: In our equation, the expression is [tex]\(|-x|\)[/tex]. Since the absolute value of any number is always non-negative, we have that [tex]\(|-x| \geq 0\)[/tex]. This means that for any value of [tex]\(x\)[/tex], [tex]\( |-x| \)[/tex] will always be a non-negative number (greater than or equal to 0).
3. Comparing with [tex]\(-10\)[/tex]: The equation states [tex]\( |-x| = -10 \)[/tex]. Here, [tex]\(-10\)[/tex] is a negative number. Since the left side of the equation (which is [tex]\(|-x|\)[/tex]) is always non-negative, it can never be equal to a negative number like [tex]\(-10\)[/tex].
4. Conclusion: Therefore, the equation [tex]\( |-x| = -10 \)[/tex] has no possible solutions. The non-negativity property of absolute values ensures that no value of [tex]\(x\)[/tex] will satisfy this equation.
Thus, the solution set of [tex]\( |-x| = -10 \)[/tex] is:
[tex]\[ \text{no solution} \][/tex]
We hope this was helpful. Please come back whenever you need more information or answers to your queries. We hope you found this helpful. Feel free to come back anytime for more accurate answers and updated information. Westonci.ca is your go-to source for reliable answers. Return soon for more expert insights.