At Westonci.ca, we connect you with experts who provide detailed answers to your most pressing questions. Start exploring now! Discover a wealth of knowledge from experts across different disciplines on our comprehensive Q&A platform. Connect with a community of professionals ready to provide precise solutions to your questions quickly and accurately.
Sagot :
To solve the equation
[tex]\[ \tan^{-1}(\ln(x^{2/3})) + \tan^{-1}(\ln(x^2)) + \tan^{-1}(\ln(x^2)) = \pi/2, \][/tex]
we start by simplifying each logarithmic term inside the inverse tangent functions.
Recall the logarithm properties: [tex]\( \ln(a^b) = b \ln(a) \)[/tex]. Applying this property:
1. [tex]\( \ln(x^{2/3}) = \frac{2}{3} \ln(x) \)[/tex]
2. [tex]\( \ln(x^2) = 2 \ln(x) \)[/tex]
Now rewrite the original equation using these logarithmic simplifications:
[tex]\[ \tan^{-1}\left(\frac{2}{3} \ln(x)\right) + \tan^{-1}(2 \ln(x)) + \tan^{-1}(2 \ln(x)) = \pi/2 \][/tex]
By combining the two identical terms:
[tex]\[ \tan^{-1}\left(\frac{2}{3} \ln(x)\right) + 2 \tan^{-1}(2 \ln(x)) = \pi/2 \][/tex]
Next, let [tex]\( y = \ln(x) \)[/tex]. Substituting [tex]\( y \)[/tex] into the equation:
[tex]\[ \tan^{-1}\left(\frac{2}{3} y\right) + 2 \tan^{-1}(2y) = \pi/2 \][/tex]
To simplify, assume [tex]\( a = \tan^{-1}\left(\frac{2}{3} y\right) \)[/tex] and [tex]\( b = \tan^{-1}(2y) \)[/tex]. Hence, the equation can be written as:
[tex]\[ a + 2b = \pi/2 \][/tex]
We use the identity for the sum of tangents for [tex]\(a\)[/tex] and [tex]\(b\)[/tex]:
[tex]\[ \tan(a + b) = \frac{\tan(a) + \tan(b)}{1 - \tan(a)\tan(b)} \][/tex]
Since [tex]\( \tan^{-1}(u) = a \)[/tex] implies [tex]\( \tan(a) = u \)[/tex]:
[tex]\[ \tan(a) = \frac{2}{3}y \quad \text{and} \quad \tan(b) = 2y \][/tex]
First, solve for [tex]\( \tan(a + b) \)[/tex]:
[tex]\[ \tan\left(a + 2b\right) = \tan\left(\frac{\pi}{2}\right) \rightarrow \text{undefined (since } \tan(\frac{\pi}{2}) \text{ is undefined)} \][/tex]
Therefore, for a valid solution as [tex]\( y \)[/tex]:
[tex]\[ a + 2b = \pi/2 \][/tex]
Let's assume simplifications to find [tex]\( y \)[/tex]:
Set [tex]\( \tan(a + b) = 1 \)[/tex]:
[tex]\[ \tan\left(\frac{\pi}{4}\right) = \frac{2y/3 + 2y}{1 - (2y/3)(2y)} = 1 \][/tex]
[tex]\[ 1 = \frac{(2y/3) + 2y}{1 - \frac{4y^2}{3}} \][/tex]
Solving this rational equation for [tex]\( y \)[/tex]:
[tex]\[ 1 = \frac{2y/3 + 2y}{1 - \frac{8y^2}{3}} \][/tex]
Cross-multiplying:
[tex]\[ 1 - \frac{8y^2}{3} = \frac{2y/3 + 2y} \][/tex]
Simplify and solve for [tex]\( y \)[/tex]:
[tex]\[ 1 - \frac{8y^2}{3} = \frac{8y/3} \][/tex]
Setting everything on one side:
[tex]\[ 1 = \frac{8y}{3} + \frac{8y^2}{3} \][/tex]
Multiply by 3:
[tex]\[ 3 = 8y + 8y^2 \][/tex]
Rearrange:
[tex]\[ 8y^2 + 8y - 3 = 0 \][/tex]
Solve this quadratic equation using the quadratic formula [tex]\( y = \frac{-b \pm \sqrt{b^2 - 4ac}}{2a} \)[/tex] where [tex]\( a = 8 \)[/tex], [tex]\( b = 8 \)[/tex], and [tex]\( c = -3 \)[/tex]:
[tex]\[ y = \frac{-8 \pm \sqrt{8^2 - 4 \cdot 8 \cdot (-3)}}{2 \cdot 8} \][/tex]
[tex]\[ y = \frac{-8 \pm \sqrt{64 + 96}}{16} \][/tex]
[tex]\[ y = \frac{-8 \pm \sqrt{160}}{16} \][/tex]
Simplify:
[tex]\[ y = \frac{-8 \pm 4\sqrt{10}}{16} \][/tex]
[tex]\[ y = \frac{-1 \pm \sqrt{10}}{4} \][/tex]
Only consider positive solutions for [tex]\( y \)[/tex]:
[tex]\[ y = \frac{\sqrt{10} - 1}{4} \][/tex]
Recall [tex]\( y = \ln(x) \)[/tex]:
[tex]\[ \ln(x) = \frac{\sqrt{10} - 1}{4} \][/tex]
Exponentiate both sides to solve for [tex]\( x \)[/tex]:
[tex]\[ x = e^{\frac{\sqrt{10} - 1}{4}} \][/tex]
Thus, the solution is:
[tex]\[ \boxed{e^{\frac{\sqrt{10} - 1}{4}}} \][/tex]
[tex]\[ \tan^{-1}(\ln(x^{2/3})) + \tan^{-1}(\ln(x^2)) + \tan^{-1}(\ln(x^2)) = \pi/2, \][/tex]
we start by simplifying each logarithmic term inside the inverse tangent functions.
Recall the logarithm properties: [tex]\( \ln(a^b) = b \ln(a) \)[/tex]. Applying this property:
1. [tex]\( \ln(x^{2/3}) = \frac{2}{3} \ln(x) \)[/tex]
2. [tex]\( \ln(x^2) = 2 \ln(x) \)[/tex]
Now rewrite the original equation using these logarithmic simplifications:
[tex]\[ \tan^{-1}\left(\frac{2}{3} \ln(x)\right) + \tan^{-1}(2 \ln(x)) + \tan^{-1}(2 \ln(x)) = \pi/2 \][/tex]
By combining the two identical terms:
[tex]\[ \tan^{-1}\left(\frac{2}{3} \ln(x)\right) + 2 \tan^{-1}(2 \ln(x)) = \pi/2 \][/tex]
Next, let [tex]\( y = \ln(x) \)[/tex]. Substituting [tex]\( y \)[/tex] into the equation:
[tex]\[ \tan^{-1}\left(\frac{2}{3} y\right) + 2 \tan^{-1}(2y) = \pi/2 \][/tex]
To simplify, assume [tex]\( a = \tan^{-1}\left(\frac{2}{3} y\right) \)[/tex] and [tex]\( b = \tan^{-1}(2y) \)[/tex]. Hence, the equation can be written as:
[tex]\[ a + 2b = \pi/2 \][/tex]
We use the identity for the sum of tangents for [tex]\(a\)[/tex] and [tex]\(b\)[/tex]:
[tex]\[ \tan(a + b) = \frac{\tan(a) + \tan(b)}{1 - \tan(a)\tan(b)} \][/tex]
Since [tex]\( \tan^{-1}(u) = a \)[/tex] implies [tex]\( \tan(a) = u \)[/tex]:
[tex]\[ \tan(a) = \frac{2}{3}y \quad \text{and} \quad \tan(b) = 2y \][/tex]
First, solve for [tex]\( \tan(a + b) \)[/tex]:
[tex]\[ \tan\left(a + 2b\right) = \tan\left(\frac{\pi}{2}\right) \rightarrow \text{undefined (since } \tan(\frac{\pi}{2}) \text{ is undefined)} \][/tex]
Therefore, for a valid solution as [tex]\( y \)[/tex]:
[tex]\[ a + 2b = \pi/2 \][/tex]
Let's assume simplifications to find [tex]\( y \)[/tex]:
Set [tex]\( \tan(a + b) = 1 \)[/tex]:
[tex]\[ \tan\left(\frac{\pi}{4}\right) = \frac{2y/3 + 2y}{1 - (2y/3)(2y)} = 1 \][/tex]
[tex]\[ 1 = \frac{(2y/3) + 2y}{1 - \frac{4y^2}{3}} \][/tex]
Solving this rational equation for [tex]\( y \)[/tex]:
[tex]\[ 1 = \frac{2y/3 + 2y}{1 - \frac{8y^2}{3}} \][/tex]
Cross-multiplying:
[tex]\[ 1 - \frac{8y^2}{3} = \frac{2y/3 + 2y} \][/tex]
Simplify and solve for [tex]\( y \)[/tex]:
[tex]\[ 1 - \frac{8y^2}{3} = \frac{8y/3} \][/tex]
Setting everything on one side:
[tex]\[ 1 = \frac{8y}{3} + \frac{8y^2}{3} \][/tex]
Multiply by 3:
[tex]\[ 3 = 8y + 8y^2 \][/tex]
Rearrange:
[tex]\[ 8y^2 + 8y - 3 = 0 \][/tex]
Solve this quadratic equation using the quadratic formula [tex]\( y = \frac{-b \pm \sqrt{b^2 - 4ac}}{2a} \)[/tex] where [tex]\( a = 8 \)[/tex], [tex]\( b = 8 \)[/tex], and [tex]\( c = -3 \)[/tex]:
[tex]\[ y = \frac{-8 \pm \sqrt{8^2 - 4 \cdot 8 \cdot (-3)}}{2 \cdot 8} \][/tex]
[tex]\[ y = \frac{-8 \pm \sqrt{64 + 96}}{16} \][/tex]
[tex]\[ y = \frac{-8 \pm \sqrt{160}}{16} \][/tex]
Simplify:
[tex]\[ y = \frac{-8 \pm 4\sqrt{10}}{16} \][/tex]
[tex]\[ y = \frac{-1 \pm \sqrt{10}}{4} \][/tex]
Only consider positive solutions for [tex]\( y \)[/tex]:
[tex]\[ y = \frac{\sqrt{10} - 1}{4} \][/tex]
Recall [tex]\( y = \ln(x) \)[/tex]:
[tex]\[ \ln(x) = \frac{\sqrt{10} - 1}{4} \][/tex]
Exponentiate both sides to solve for [tex]\( x \)[/tex]:
[tex]\[ x = e^{\frac{\sqrt{10} - 1}{4}} \][/tex]
Thus, the solution is:
[tex]\[ \boxed{e^{\frac{\sqrt{10} - 1}{4}}} \][/tex]
Thanks for using our platform. We're always here to provide accurate and up-to-date answers to all your queries. We appreciate your visit. Our platform is always here to offer accurate and reliable answers. Return anytime. We're dedicated to helping you find the answers you need at Westonci.ca. Don't hesitate to return for more.