Welcome to Westonci.ca, where your questions are met with accurate answers from a community of experts and enthusiasts. Get precise and detailed answers to your questions from a knowledgeable community of experts on our Q&A platform. Join our platform to connect with experts ready to provide precise answers to your questions in different areas.
Sagot :
To determine the intervals where the curve [tex]\( y = -3 x^{\frac{2}{3}} (x-5) \)[/tex] is increasing, we need to:
1. Find the first derivative of [tex]\( y \)[/tex] with respect to [tex]\( x \)[/tex].
2. Identify the critical points by setting the first derivative equal to zero and solving for [tex]\( x \)[/tex].
3. Analyze the sign of the first derivative around these critical points to determine where the function is increasing (i.e., where the first derivative is positive).
Given the function [tex]\( y = -3 x^{\frac{2}{3}} (x-5) \)[/tex], the first derivative [tex]\( \frac{dy}{dx} \)[/tex] is:
[tex]\[ \frac{dy}{dx} = -2.0 \frac{(x - 5)}{x^{1/3}} - 3 x^{2/3} \][/tex]
Now, let's determine the critical points by setting [tex]\( \frac{dy}{dx} \)[/tex] to zero and solving for [tex]\( x \)[/tex]:
[tex]\[ -2.0 \frac{(x - 5)}{x^{1/3}} - 3 x^{2/3} = 0 \][/tex]
Solving this equation, we find one critical point at [tex]\( x = 2 \)[/tex].
Next, we analyze the sign of [tex]\( \frac{dy}{dx} \)[/tex] around this critical point:
1. For [tex]\( x < 0 \)[/tex], let's choose a test point like [tex]\( x = -1 \)[/tex]:
[tex]\[ \frac{dy}{dx} \text{ at } x = -1 \approx -2.0 \frac{(-1 - 5)}{(-1)^{1/3}} - 3 (-1)^{2/3} \][/tex]
[tex]\[ = -2.0 \frac{(-6)}{-1} - 3 \cdot 1 = -12 - 3 = -15 \][/tex]
Thus, [tex]\( \frac{dy}{dx} < 0 \)[/tex].
2. For [tex]\( 0 < x < 2 \)[/tex], let's choose a test point like [tex]\( x = 1 \)[/tex]:
[tex]\[ \frac{dy}{dx} \text{ at } x = 1 \approx -2.0 \frac{(1 - 5)}{1^{1/3}} - 3 \cdot 1^{2/3} \][/tex]
[tex]\[ = -2.0 \frac{(-4)}{1} - 3 \cdot 1 = 8 - 3 = 5 \][/tex]
Thus, [tex]\( \frac{dy}{dx} > 0 \)[/tex].
3. For [tex]\( x > 2 \)[/tex], let's choose a test point like [tex]\( x = 3 \)[/tex]:
[tex]\[ \frac{dy}{dx} \text{ at } x = 3 \approx -2.0 \frac{(3 - 5)}{3^{1/3}} - 3 \cdot 3^{2/3} \][/tex]
[tex]\[ = -2.0 \frac{(-2)}{3^{1/3}} - 3 \cdot 3^{2/3} = \frac{4}{3^{1/3}} - 9 \cdot 3^{2/3} \][/tex]
Evaluating these terms, we find that [tex]\( \frac{dy}{dx} < 0 \)[/tex].
From this analysis, we find that the function is increasing when [tex]\( 0 < x < 2 \)[/tex]. Therefore, the correct answer is:
(B) [tex]\( 0 < x < 2 \)[/tex].
1. Find the first derivative of [tex]\( y \)[/tex] with respect to [tex]\( x \)[/tex].
2. Identify the critical points by setting the first derivative equal to zero and solving for [tex]\( x \)[/tex].
3. Analyze the sign of the first derivative around these critical points to determine where the function is increasing (i.e., where the first derivative is positive).
Given the function [tex]\( y = -3 x^{\frac{2}{3}} (x-5) \)[/tex], the first derivative [tex]\( \frac{dy}{dx} \)[/tex] is:
[tex]\[ \frac{dy}{dx} = -2.0 \frac{(x - 5)}{x^{1/3}} - 3 x^{2/3} \][/tex]
Now, let's determine the critical points by setting [tex]\( \frac{dy}{dx} \)[/tex] to zero and solving for [tex]\( x \)[/tex]:
[tex]\[ -2.0 \frac{(x - 5)}{x^{1/3}} - 3 x^{2/3} = 0 \][/tex]
Solving this equation, we find one critical point at [tex]\( x = 2 \)[/tex].
Next, we analyze the sign of [tex]\( \frac{dy}{dx} \)[/tex] around this critical point:
1. For [tex]\( x < 0 \)[/tex], let's choose a test point like [tex]\( x = -1 \)[/tex]:
[tex]\[ \frac{dy}{dx} \text{ at } x = -1 \approx -2.0 \frac{(-1 - 5)}{(-1)^{1/3}} - 3 (-1)^{2/3} \][/tex]
[tex]\[ = -2.0 \frac{(-6)}{-1} - 3 \cdot 1 = -12 - 3 = -15 \][/tex]
Thus, [tex]\( \frac{dy}{dx} < 0 \)[/tex].
2. For [tex]\( 0 < x < 2 \)[/tex], let's choose a test point like [tex]\( x = 1 \)[/tex]:
[tex]\[ \frac{dy}{dx} \text{ at } x = 1 \approx -2.0 \frac{(1 - 5)}{1^{1/3}} - 3 \cdot 1^{2/3} \][/tex]
[tex]\[ = -2.0 \frac{(-4)}{1} - 3 \cdot 1 = 8 - 3 = 5 \][/tex]
Thus, [tex]\( \frac{dy}{dx} > 0 \)[/tex].
3. For [tex]\( x > 2 \)[/tex], let's choose a test point like [tex]\( x = 3 \)[/tex]:
[tex]\[ \frac{dy}{dx} \text{ at } x = 3 \approx -2.0 \frac{(3 - 5)}{3^{1/3}} - 3 \cdot 3^{2/3} \][/tex]
[tex]\[ = -2.0 \frac{(-2)}{3^{1/3}} - 3 \cdot 3^{2/3} = \frac{4}{3^{1/3}} - 9 \cdot 3^{2/3} \][/tex]
Evaluating these terms, we find that [tex]\( \frac{dy}{dx} < 0 \)[/tex].
From this analysis, we find that the function is increasing when [tex]\( 0 < x < 2 \)[/tex]. Therefore, the correct answer is:
(B) [tex]\( 0 < x < 2 \)[/tex].
Thanks for stopping by. We are committed to providing the best answers for all your questions. See you again soon. Thanks for using our service. We're always here to provide accurate and up-to-date answers to all your queries. Westonci.ca is your trusted source for answers. Visit us again to find more information on diverse topics.