Westonci.ca connects you with experts who provide insightful answers to your questions. Join us today and start learning! Explore comprehensive solutions to your questions from a wide range of professionals on our user-friendly platform. Discover in-depth answers to your questions from a wide network of professionals on our user-friendly Q&A platform.
Sagot :
To determine the intervals where the curve [tex]\( y = -3 x^{\frac{2}{3}} (x-5) \)[/tex] is increasing, we need to:
1. Find the first derivative of [tex]\( y \)[/tex] with respect to [tex]\( x \)[/tex].
2. Identify the critical points by setting the first derivative equal to zero and solving for [tex]\( x \)[/tex].
3. Analyze the sign of the first derivative around these critical points to determine where the function is increasing (i.e., where the first derivative is positive).
Given the function [tex]\( y = -3 x^{\frac{2}{3}} (x-5) \)[/tex], the first derivative [tex]\( \frac{dy}{dx} \)[/tex] is:
[tex]\[ \frac{dy}{dx} = -2.0 \frac{(x - 5)}{x^{1/3}} - 3 x^{2/3} \][/tex]
Now, let's determine the critical points by setting [tex]\( \frac{dy}{dx} \)[/tex] to zero and solving for [tex]\( x \)[/tex]:
[tex]\[ -2.0 \frac{(x - 5)}{x^{1/3}} - 3 x^{2/3} = 0 \][/tex]
Solving this equation, we find one critical point at [tex]\( x = 2 \)[/tex].
Next, we analyze the sign of [tex]\( \frac{dy}{dx} \)[/tex] around this critical point:
1. For [tex]\( x < 0 \)[/tex], let's choose a test point like [tex]\( x = -1 \)[/tex]:
[tex]\[ \frac{dy}{dx} \text{ at } x = -1 \approx -2.0 \frac{(-1 - 5)}{(-1)^{1/3}} - 3 (-1)^{2/3} \][/tex]
[tex]\[ = -2.0 \frac{(-6)}{-1} - 3 \cdot 1 = -12 - 3 = -15 \][/tex]
Thus, [tex]\( \frac{dy}{dx} < 0 \)[/tex].
2. For [tex]\( 0 < x < 2 \)[/tex], let's choose a test point like [tex]\( x = 1 \)[/tex]:
[tex]\[ \frac{dy}{dx} \text{ at } x = 1 \approx -2.0 \frac{(1 - 5)}{1^{1/3}} - 3 \cdot 1^{2/3} \][/tex]
[tex]\[ = -2.0 \frac{(-4)}{1} - 3 \cdot 1 = 8 - 3 = 5 \][/tex]
Thus, [tex]\( \frac{dy}{dx} > 0 \)[/tex].
3. For [tex]\( x > 2 \)[/tex], let's choose a test point like [tex]\( x = 3 \)[/tex]:
[tex]\[ \frac{dy}{dx} \text{ at } x = 3 \approx -2.0 \frac{(3 - 5)}{3^{1/3}} - 3 \cdot 3^{2/3} \][/tex]
[tex]\[ = -2.0 \frac{(-2)}{3^{1/3}} - 3 \cdot 3^{2/3} = \frac{4}{3^{1/3}} - 9 \cdot 3^{2/3} \][/tex]
Evaluating these terms, we find that [tex]\( \frac{dy}{dx} < 0 \)[/tex].
From this analysis, we find that the function is increasing when [tex]\( 0 < x < 2 \)[/tex]. Therefore, the correct answer is:
(B) [tex]\( 0 < x < 2 \)[/tex].
1. Find the first derivative of [tex]\( y \)[/tex] with respect to [tex]\( x \)[/tex].
2. Identify the critical points by setting the first derivative equal to zero and solving for [tex]\( x \)[/tex].
3. Analyze the sign of the first derivative around these critical points to determine where the function is increasing (i.e., where the first derivative is positive).
Given the function [tex]\( y = -3 x^{\frac{2}{3}} (x-5) \)[/tex], the first derivative [tex]\( \frac{dy}{dx} \)[/tex] is:
[tex]\[ \frac{dy}{dx} = -2.0 \frac{(x - 5)}{x^{1/3}} - 3 x^{2/3} \][/tex]
Now, let's determine the critical points by setting [tex]\( \frac{dy}{dx} \)[/tex] to zero and solving for [tex]\( x \)[/tex]:
[tex]\[ -2.0 \frac{(x - 5)}{x^{1/3}} - 3 x^{2/3} = 0 \][/tex]
Solving this equation, we find one critical point at [tex]\( x = 2 \)[/tex].
Next, we analyze the sign of [tex]\( \frac{dy}{dx} \)[/tex] around this critical point:
1. For [tex]\( x < 0 \)[/tex], let's choose a test point like [tex]\( x = -1 \)[/tex]:
[tex]\[ \frac{dy}{dx} \text{ at } x = -1 \approx -2.0 \frac{(-1 - 5)}{(-1)^{1/3}} - 3 (-1)^{2/3} \][/tex]
[tex]\[ = -2.0 \frac{(-6)}{-1} - 3 \cdot 1 = -12 - 3 = -15 \][/tex]
Thus, [tex]\( \frac{dy}{dx} < 0 \)[/tex].
2. For [tex]\( 0 < x < 2 \)[/tex], let's choose a test point like [tex]\( x = 1 \)[/tex]:
[tex]\[ \frac{dy}{dx} \text{ at } x = 1 \approx -2.0 \frac{(1 - 5)}{1^{1/3}} - 3 \cdot 1^{2/3} \][/tex]
[tex]\[ = -2.0 \frac{(-4)}{1} - 3 \cdot 1 = 8 - 3 = 5 \][/tex]
Thus, [tex]\( \frac{dy}{dx} > 0 \)[/tex].
3. For [tex]\( x > 2 \)[/tex], let's choose a test point like [tex]\( x = 3 \)[/tex]:
[tex]\[ \frac{dy}{dx} \text{ at } x = 3 \approx -2.0 \frac{(3 - 5)}{3^{1/3}} - 3 \cdot 3^{2/3} \][/tex]
[tex]\[ = -2.0 \frac{(-2)}{3^{1/3}} - 3 \cdot 3^{2/3} = \frac{4}{3^{1/3}} - 9 \cdot 3^{2/3} \][/tex]
Evaluating these terms, we find that [tex]\( \frac{dy}{dx} < 0 \)[/tex].
From this analysis, we find that the function is increasing when [tex]\( 0 < x < 2 \)[/tex]. Therefore, the correct answer is:
(B) [tex]\( 0 < x < 2 \)[/tex].
We appreciate your time. Please revisit us for more reliable answers to any questions you may have. Thank you for visiting. Our goal is to provide the most accurate answers for all your informational needs. Come back soon. We're dedicated to helping you find the answers you need at Westonci.ca. Don't hesitate to return for more.