Find the best solutions to your questions at Westonci.ca, the premier Q&A platform with a community of knowledgeable experts. Explore thousands of questions and answers from a knowledgeable community of experts on our user-friendly platform. Our platform offers a seamless experience for finding reliable answers from a network of knowledgeable professionals.
Sagot :
To determine the intervals where the curve [tex]\( y = -3 x^{\frac{2}{3}} (x-5) \)[/tex] is increasing, we need to:
1. Find the first derivative of [tex]\( y \)[/tex] with respect to [tex]\( x \)[/tex].
2. Identify the critical points by setting the first derivative equal to zero and solving for [tex]\( x \)[/tex].
3. Analyze the sign of the first derivative around these critical points to determine where the function is increasing (i.e., where the first derivative is positive).
Given the function [tex]\( y = -3 x^{\frac{2}{3}} (x-5) \)[/tex], the first derivative [tex]\( \frac{dy}{dx} \)[/tex] is:
[tex]\[ \frac{dy}{dx} = -2.0 \frac{(x - 5)}{x^{1/3}} - 3 x^{2/3} \][/tex]
Now, let's determine the critical points by setting [tex]\( \frac{dy}{dx} \)[/tex] to zero and solving for [tex]\( x \)[/tex]:
[tex]\[ -2.0 \frac{(x - 5)}{x^{1/3}} - 3 x^{2/3} = 0 \][/tex]
Solving this equation, we find one critical point at [tex]\( x = 2 \)[/tex].
Next, we analyze the sign of [tex]\( \frac{dy}{dx} \)[/tex] around this critical point:
1. For [tex]\( x < 0 \)[/tex], let's choose a test point like [tex]\( x = -1 \)[/tex]:
[tex]\[ \frac{dy}{dx} \text{ at } x = -1 \approx -2.0 \frac{(-1 - 5)}{(-1)^{1/3}} - 3 (-1)^{2/3} \][/tex]
[tex]\[ = -2.0 \frac{(-6)}{-1} - 3 \cdot 1 = -12 - 3 = -15 \][/tex]
Thus, [tex]\( \frac{dy}{dx} < 0 \)[/tex].
2. For [tex]\( 0 < x < 2 \)[/tex], let's choose a test point like [tex]\( x = 1 \)[/tex]:
[tex]\[ \frac{dy}{dx} \text{ at } x = 1 \approx -2.0 \frac{(1 - 5)}{1^{1/3}} - 3 \cdot 1^{2/3} \][/tex]
[tex]\[ = -2.0 \frac{(-4)}{1} - 3 \cdot 1 = 8 - 3 = 5 \][/tex]
Thus, [tex]\( \frac{dy}{dx} > 0 \)[/tex].
3. For [tex]\( x > 2 \)[/tex], let's choose a test point like [tex]\( x = 3 \)[/tex]:
[tex]\[ \frac{dy}{dx} \text{ at } x = 3 \approx -2.0 \frac{(3 - 5)}{3^{1/3}} - 3 \cdot 3^{2/3} \][/tex]
[tex]\[ = -2.0 \frac{(-2)}{3^{1/3}} - 3 \cdot 3^{2/3} = \frac{4}{3^{1/3}} - 9 \cdot 3^{2/3} \][/tex]
Evaluating these terms, we find that [tex]\( \frac{dy}{dx} < 0 \)[/tex].
From this analysis, we find that the function is increasing when [tex]\( 0 < x < 2 \)[/tex]. Therefore, the correct answer is:
(B) [tex]\( 0 < x < 2 \)[/tex].
1. Find the first derivative of [tex]\( y \)[/tex] with respect to [tex]\( x \)[/tex].
2. Identify the critical points by setting the first derivative equal to zero and solving for [tex]\( x \)[/tex].
3. Analyze the sign of the first derivative around these critical points to determine where the function is increasing (i.e., where the first derivative is positive).
Given the function [tex]\( y = -3 x^{\frac{2}{3}} (x-5) \)[/tex], the first derivative [tex]\( \frac{dy}{dx} \)[/tex] is:
[tex]\[ \frac{dy}{dx} = -2.0 \frac{(x - 5)}{x^{1/3}} - 3 x^{2/3} \][/tex]
Now, let's determine the critical points by setting [tex]\( \frac{dy}{dx} \)[/tex] to zero and solving for [tex]\( x \)[/tex]:
[tex]\[ -2.0 \frac{(x - 5)}{x^{1/3}} - 3 x^{2/3} = 0 \][/tex]
Solving this equation, we find one critical point at [tex]\( x = 2 \)[/tex].
Next, we analyze the sign of [tex]\( \frac{dy}{dx} \)[/tex] around this critical point:
1. For [tex]\( x < 0 \)[/tex], let's choose a test point like [tex]\( x = -1 \)[/tex]:
[tex]\[ \frac{dy}{dx} \text{ at } x = -1 \approx -2.0 \frac{(-1 - 5)}{(-1)^{1/3}} - 3 (-1)^{2/3} \][/tex]
[tex]\[ = -2.0 \frac{(-6)}{-1} - 3 \cdot 1 = -12 - 3 = -15 \][/tex]
Thus, [tex]\( \frac{dy}{dx} < 0 \)[/tex].
2. For [tex]\( 0 < x < 2 \)[/tex], let's choose a test point like [tex]\( x = 1 \)[/tex]:
[tex]\[ \frac{dy}{dx} \text{ at } x = 1 \approx -2.0 \frac{(1 - 5)}{1^{1/3}} - 3 \cdot 1^{2/3} \][/tex]
[tex]\[ = -2.0 \frac{(-4)}{1} - 3 \cdot 1 = 8 - 3 = 5 \][/tex]
Thus, [tex]\( \frac{dy}{dx} > 0 \)[/tex].
3. For [tex]\( x > 2 \)[/tex], let's choose a test point like [tex]\( x = 3 \)[/tex]:
[tex]\[ \frac{dy}{dx} \text{ at } x = 3 \approx -2.0 \frac{(3 - 5)}{3^{1/3}} - 3 \cdot 3^{2/3} \][/tex]
[tex]\[ = -2.0 \frac{(-2)}{3^{1/3}} - 3 \cdot 3^{2/3} = \frac{4}{3^{1/3}} - 9 \cdot 3^{2/3} \][/tex]
Evaluating these terms, we find that [tex]\( \frac{dy}{dx} < 0 \)[/tex].
From this analysis, we find that the function is increasing when [tex]\( 0 < x < 2 \)[/tex]. Therefore, the correct answer is:
(B) [tex]\( 0 < x < 2 \)[/tex].
We hope you found this helpful. Feel free to come back anytime for more accurate answers and updated information. We appreciate your visit. Our platform is always here to offer accurate and reliable answers. Return anytime. Keep exploring Westonci.ca for more insightful answers to your questions. We're here to help.