Discover answers to your questions with Westonci.ca, the leading Q&A platform that connects you with knowledgeable experts. Experience the ease of finding quick and accurate answers to your questions from professionals on our platform. Join our Q&A platform to connect with experts dedicated to providing accurate answers to your questions in various fields.
Sagot :
Certainly! Let's solve this problem step-by-step:
### Given:
- The volume of a gas at [tex]\(0{ }^{\circ} C\)[/tex] (273.15 K) is [tex]\(V_0\)[/tex].
- We need to determine the volume of the gas at [tex]\(-1{ }^{\circ} C\)[/tex] (272.15 K) maintaining constant pressure.
### Step-by-Step Solution:
1. Temperature Conversion:
The initial and final temperatures are:
[tex]\[ T_0 = 0{ }^{\circ} C = 273.15 \, \text{K} \][/tex]
[tex]\[ T_{-1} = -1{ }^{\circ} C = 272.15 \, \text{K} \][/tex]
2. Charles's Law Application:
Charles's Law states that the volume of a gas is directly proportional to its temperature (in Kelvin) when pressure is constant:
[tex]\[ \frac{V_0}{T_0} = \frac{V_{-1}}{T_{-1}} \][/tex]
Where:
[tex]\[ V_0 \quad \text{(Initial Volume at } T_0) \][/tex]
[tex]\[ V_{-1} \quad \text{(Final Volume at } T_{-1}) \][/tex]
3. Solving for [tex]\(V_{-1}\)[/tex]:
We rearrange the equation to solve for [tex]\(V_{-1}\)[/tex]:
[tex]\[ V_{-1} = V_0 \times \frac{T_{-1}}{T_0} \][/tex]
Substituting the temperatures:
[tex]\[ V_{-1} = V_0 \times \frac{272.15}{273.15} \][/tex]
4. Calculating the Volume:
By performing the calculation:
[tex]\[ V_{-1} \approx V_0 \times 0.996339 \][/tex]
5. Selecting the Correct Option:
Given the possible options:
- (a) [tex]\(\left(V_0 + \frac{V_0}{273}\right) \, \text{ml}\)[/tex]
- (b) [tex]\(\left(V_0 + \frac{272 V_0}{273}\right) \, \text{ml}\)[/tex]
- (c) [tex]\(\left(V_0 - \frac{V_0}{273}\right) \, \text{ml}\)[/tex]
- (d) [tex]\(\left(\frac{V_0}{273} - V_0\right) \, \text{ml}\)[/tex]
Let's compare these options with the calculated value.
Comparing with each step, we find that the correct option matching our calculation is:
[tex]\[ (c) \left(V_0 - \frac{V_0}{273}\right) \, \text{ml} \][/tex]
6. Verifying the Option:
Let's verify if the chosen option yields the correct value:
[tex]\[ \frac{V_0}{273} \approx 0.003663 \, V_0 \][/tex]
Thus,
[tex]\[ V_0 - \frac{V_0}{273} \approx V_0 \times (1 - 0.003663) = V_0 \times 0.996337 \][/tex]
This approximates very closely to our initial calculation of [tex]\(0.996339 \, V_0\)[/tex]. Therefore, the correct answer is indeed:
[tex]\[ \boxed{\left(V_0 - \frac{V_0}{273}\right) \, \text{ml}} \][/tex]
Thus, the answer is option (c).
### Given:
- The volume of a gas at [tex]\(0{ }^{\circ} C\)[/tex] (273.15 K) is [tex]\(V_0\)[/tex].
- We need to determine the volume of the gas at [tex]\(-1{ }^{\circ} C\)[/tex] (272.15 K) maintaining constant pressure.
### Step-by-Step Solution:
1. Temperature Conversion:
The initial and final temperatures are:
[tex]\[ T_0 = 0{ }^{\circ} C = 273.15 \, \text{K} \][/tex]
[tex]\[ T_{-1} = -1{ }^{\circ} C = 272.15 \, \text{K} \][/tex]
2. Charles's Law Application:
Charles's Law states that the volume of a gas is directly proportional to its temperature (in Kelvin) when pressure is constant:
[tex]\[ \frac{V_0}{T_0} = \frac{V_{-1}}{T_{-1}} \][/tex]
Where:
[tex]\[ V_0 \quad \text{(Initial Volume at } T_0) \][/tex]
[tex]\[ V_{-1} \quad \text{(Final Volume at } T_{-1}) \][/tex]
3. Solving for [tex]\(V_{-1}\)[/tex]:
We rearrange the equation to solve for [tex]\(V_{-1}\)[/tex]:
[tex]\[ V_{-1} = V_0 \times \frac{T_{-1}}{T_0} \][/tex]
Substituting the temperatures:
[tex]\[ V_{-1} = V_0 \times \frac{272.15}{273.15} \][/tex]
4. Calculating the Volume:
By performing the calculation:
[tex]\[ V_{-1} \approx V_0 \times 0.996339 \][/tex]
5. Selecting the Correct Option:
Given the possible options:
- (a) [tex]\(\left(V_0 + \frac{V_0}{273}\right) \, \text{ml}\)[/tex]
- (b) [tex]\(\left(V_0 + \frac{272 V_0}{273}\right) \, \text{ml}\)[/tex]
- (c) [tex]\(\left(V_0 - \frac{V_0}{273}\right) \, \text{ml}\)[/tex]
- (d) [tex]\(\left(\frac{V_0}{273} - V_0\right) \, \text{ml}\)[/tex]
Let's compare these options with the calculated value.
Comparing with each step, we find that the correct option matching our calculation is:
[tex]\[ (c) \left(V_0 - \frac{V_0}{273}\right) \, \text{ml} \][/tex]
6. Verifying the Option:
Let's verify if the chosen option yields the correct value:
[tex]\[ \frac{V_0}{273} \approx 0.003663 \, V_0 \][/tex]
Thus,
[tex]\[ V_0 - \frac{V_0}{273} \approx V_0 \times (1 - 0.003663) = V_0 \times 0.996337 \][/tex]
This approximates very closely to our initial calculation of [tex]\(0.996339 \, V_0\)[/tex]. Therefore, the correct answer is indeed:
[tex]\[ \boxed{\left(V_0 - \frac{V_0}{273}\right) \, \text{ml}} \][/tex]
Thus, the answer is option (c).
Thank you for choosing our platform. We're dedicated to providing the best answers for all your questions. Visit us again. We hope you found what you were looking for. Feel free to revisit us for more answers and updated information. We're glad you chose Westonci.ca. Revisit us for updated answers from our knowledgeable team.